• Nie Znaleziono Wyników

Flexible oscillating duct: An approach to a novel propulsor

N/A
N/A
Protected

Academic year: 2021

Share "Flexible oscillating duct: An approach to a novel propulsor"

Copied!
15
0
0

Pełen tekst

(1)

Applied Ocean Reseaich 36 (2012) 3 6 - 5 0

ELSEVIER

Contents lists available at SciVerse ScienceDirect

Applied Ocean Research

journal liomepage: www/.elsevier.com/locate/apor

O C E A N

RESEARCH

Flexible Oscillating Duct: An approach to a novel propulsor

Gerasimos Politis*, Vasileios Tsarsitalidis

NTUA, Athens, Greece

A R T I C L E I N F O

Article lustory: Received 2 1 October 2011

Received i n revised f o r m 17 January 2012 Accepted 28 January 2012

Available online 14 March 2012

Keywords:

Biomimetic propulsion Unconventional propulsion Boundary element method Unsteady wake rollup

A B S T R A C T I n s p i r e d b y a j e l l y f i s h , w h e r e a b u l k m u s c l e o s c i l l a t o r y m o t i o n p r o d u c e s t h r u s t , t h e i n i t i a t i v e w a s tal<en t o e x p l o r e t h e p r o p u l s i o n c a p a b i l i t i e s o f a n e w p r o p u l s o r c o n c e p t b a s e d o n a n o s c i l l a t i n g / p u l s a t i n g f l e x -i b l e d u c t . W e n a m e t h -i s d e v -i c e ' F l e x -i b l e O s c -i l l a t -i n g D u c t ' ( F O D ) . I n t h -i s p a p e r o u r p u r p o s e -is t h r e e f o l d . F i r s t l y , t o u n d e r s t a n d t h e FDD's basic t h r u s t p r o d u c i n g m e c h a n i s m s , s e c o n d l y t o p r e s e n t s y s t e m a t i c FOD h y d r o d y n a m i c p e r f o r m a n c e r e s u l t s , n e c e s s a r y f o r i t s o p t i m u m d e s i g n , a n d t h i r d l y t o c o m p a r e t h e p o w -e r i n g p -e r f o r m a n c -e o f s h i p s -e q u i p p -e d w i t h FODs w i t h t h o s -e w i t h c o n v -e n t i o n a l p r o p -e l l -e r s . T o t h i s -e n d , t h -e p r o b l e m o f a n a c t i v e l y d e f o r m i n g FOD, t r a v e l l i n g w i t h a g i v e n v e l o c i t y i n a n i n f i n i t e l y e x t e n d e d f l u i d , is f o r m u l a t e d a n d s o l v e d u s i n g a n i n d i r e c t S o u r c e - D o u b l e t 3D-BE1V1, t o g e t h e r w i t h a t i m e s t e p p i n g a l g o r i t h m c a p a b l e o f t r a c i n g t h e f r e e v o r t e x s h e e t g e o m e t r y . A n o n l i n e a r p r e s s u r e t y p e K u t t a c o n d i t i o n is a p p l i e d at t h e t r a i l i n g e d g e o f t h e FOD. W i t h a m o l l i f i e r based filtering o f t h e i n d u c e d v e l o c i t i e s , t h e u n s t e a d y r o l l u p p a t t e r n , c r e a t e d b y t h e FOD m o t i o n , e m e r g e s . T h e p r o d u c e d p a t t e r n i n d i c a t e s t h a t FOD t h r u s t is p r o d u c e d t h r o u g h a t r a i n o f c o a x i a l v o r t e x r i n g s w i t h c i r c u l a t i o n s o f a l t e r n a t i n g signs. FOD d e s i g n p a r a m e t e r s are t h e n i n t r o d u c e d a n d d i s c u s s e d a n d d e c i s i o n s w e r e t a k e n r e g a r d i n g c r e a t i o n o f a FOD s y s t e m a t i c series. A s p e c i a l d a t a g e n e r a t i o n a l g o r i t h m has b e e n d e v e l o p e d , c a p a b l e o f g e n e r a t i n g t h e u n s t e a d y t h r u s t -p r o d u c i n g m o t i o n s f o r t h e FOD, i n c l u d i n g c h o r d - w i s e flexibility. U s i n g t h i s d a t a - g e n e r a t i o n c o d e , w e f e e d t h e B E M w i t h s y s t e m a t i c g e o m e t r i c a n d m o t i o n d a t a a n d c a l c u l a t e t h e o p e n w a t e r t h r u s t , p o w e r a n d e f f i c i e n c y f o r t h e p r o p o s e d FOD s e r i e s . T h e s o l u t i o n o f t h e FOD o p t i m u m d e s i g n p r o b l e m f o r r e a l s h i p s is t h e n p r e s e n t e d . T h e d e s i g n m e t h o d has b e e n a p p l i e d f o r t h r e e s h i p t y p e s . C o m p a r i s o n s s h o w t h a t t h e FOD is a p r o m i s i n g s y s t e m w i t h p r o p u l s i v e c o e f f i c i e n t s s u p e r i o r t o t h a t o f a c o n v e n t i o n a l p r o p e l l e r . © 2012 E l s e v i e r L t d . A l l r i g h t s r e s e r v e d . 1. I n t r o d u c t i o n

E c o n o m i c a n d ecological reasons, s c a r c i t y o f resources and d e m a n d f o r speed d i c t a t e a n e v e r - g r o w i n g d r i v e f o r e f f i c i e n c y . The a p p l i c a t i o n o f b i o m i m e t i c systems i n p r o p u l s i o n is far f r o m n e w as a t h o u g h t , y e t i t is d i s r e g a r d e d as i m m a t u r e , d e s p i t e t h e f a c t t h a t lias been u t i l i z e d b y b i r d s a n d sea creatures f o r m i l l i o n s o f years, as a r e s u l t o f n a t u r a l s e l e c t i o n since i t is t h e o n l y s y s t e m capa-b l e o f e x t r a c t i n g e n e r g y f r o m the e n v i r o n m e n t a n d t r a n s f o r m i n g i t t o u s e f u l p r o p e l l i n g t h r u s t . I n s o m e o f his w o r k s , t h e p h i l o s o p h e r A r i s t o t l e considers the a n a t o m y a n d l o c o m o t i o n o f s w i m m i n g crea-tures. Leonardo Da V i n c i h a d also m a d e m a n y designs o f b i r d - l i k e f l y i n g m a c h i n e s , w h i c h w o u l d be successful, i f he had t h e today's t e c h n o l o g y .

The m o d e r n h i s t o r y o f b i o m i m e t i c s starts i n 1935 w i t h Gray's paradox, a n d t h e o r e t i c a l d e v e l o p m e n t s s t a r t w i t h t h e w o r k s o f L i g h t h i l l [ 1 1 , 1 2 ] a n d W u [ 2 6 ] , A t h o r o u g h r e v i e w o f those t h e o -ries can be f o u n d i n [ 2 2 ] , Extensive r e v i e w s o f c o m p u t a t i o n a l and

* Corresponding a u t h o r Tel.: +30 2107721041.

E-rttail addresses: polit@central.ntua.gr (G. Politis), vtsars@central.ntua.gr (V. Tsarsitalidis).

0141-1187/$ - see f r o n t matter © 2 0 1 2 Elsevier Ltd. All rights reserved, d o i : 10.1016/j.apor.2012.01.006

e x p e r i m e n t a l w o r k i n b i o m i m e t i c s can be f o u n d i n the papers o f Shyy et al. [ 2 1 ] r e g a r d i n g a e r o d y n a m i c s a n d aeroelasticity, o f T r i -a n t -a f y l l o u e t -a l , [ 2 5 , 2 4 ] r e g -a r d i n g e x p e r i m e n t -a l d e v e l o p m e n t s -a n d o f Rozhdestvensky a n d R y z h o v [ 2 0 ] r e g a r d i n g all t y p e s o f a p p l i c a -tions, even f u l l scale, w i t h a d d i t i o n a l care g i v e n to t h e w o r k d o n e b y eastern scientists (i.e. Russians a n d Japanese). I n t e r e s t i n g i n f o r -m a t i o n is also i n c l u d e d i n t h e books by A l e x a n d e r [ 2 ] , Shyy et al. [ 2 1 ] a n d T a y l o r et a l . [ 2 3 ] . IVlarine b i o m i m e t i c p r o p u l s o r s are also discussed i n t h e b o o k o f Bose [ 3 ] .

Scope o f t h e p r e s e n t w o r k is t o i n t r o d u c e the FOD, s h o w its f e a -s i b i l i t y a-s a real -s h i p p r o p u l -s o r , e x p l a i n it-s h y d r o - m e c h a n i c -s a n d p r o p o s e a design m e t h o d o l o g y a l o n g w i t h the necessary design d i a g r a m s . A n a t u r a l p a r a d i g m o f a p r o p u l s o r w i t h s i m i l a r t h r u s t p r o d u c t i o n m e c h a n i s m s to t h a t o f t h e FOD, is t h e j e l l y f i s h , j e l l y f i s h f l o w mechanics has been i n v e s t i g a t e d by D a b i r i a n d G h a r i b [ 4 , 5 ] w h o have m a d e m a n y n u m e r i c a l a n d e x p e r i m e n t a l s i m u l a t i o n s a n d have s h o w n the f e a s i b i l i t y o f u s i n g v a r i a b l e d i a m e t e r nozzles as p r o p u l s o r s .

F l o w s i m u l a t i o n s u s i n g B E M is a w e l l - d e v e l o p e d a n d success-f u l m a t h e m a t i c a l / n u m e r i c a l t h e o r y w i t h v e r y g o o d p r e d i c t i o n s success-f o r cases w h e r e l i f t is t h e m a i n m e c h a n i s m o f f o r c e p r o d u c t i o n [ 1 0 ] . The first 3 - D BEM f o r a n a l y z i n g t h e f l o w a r o u n d a r b i t r a r y n o n - l i f t i n g bodies can be a t t r i b u t e d t o Hess a n d S m i t h [ 8 ] . The first 3 - D BEM

(2)

C. Politis, V. Tsarsitalidis /Applied Ocean Research 36 (2012) 36-50 37

f o r a n a l y z i n g the steady f l o w a r o u n d a m a r i n e p r o p e l l e r can be a t t r i b u t e d t o Hess and V a l a r e z o [ 9 ] , w h e r e t h e classical Hess a n d S m i t h l i f t i n g f o r m u l a t i o n has b e e n u t i l i z e d f o r t h e r e p r e s e n t a t i o n o f a s t e a d i l y t r a n s l a t i n g a n d r o t a t i n g p r o p e l l e r u s i n g a p r e s c r i b e d w a k e shape to m o d e l t r a i l i n g v o r t e x sheets. I n t h e f o l l o w i n g years, v a r i o u s a l t e r n a t i v e f o r m u l a t i o n s o f the p a n e l m e t h o d have been p r e s e n t e d f o r the s o l u t i o n o f f l o w p r o b l e m s . A b r i e f p r e s e n t a t i o n o f t h e h i s t o r i c a l aspects o f p r o p e l l e r r e l a t e d BEM f o r m u l a t i o n s can be f o u n d i n [ 1 4 ] . This paper also p r e s e n t s t h e f o r m u l a t i o n a n d s o l u t i o n o f the p r o b l e m o f an u n s t e a d i l y m o v i n g p r o p e l l e r u s i n g a M o r i n o -t y p e B E M . The m a i n i n n o v a -t i o n i n -t h i s w o r k w a s -t h e c a l c u l a -t i o n b y t h e code o f t h e d y n a m i c e v o l u t i o n o f the f r e e v o r t e x sheets, e m a n a t -i n g f r o m t h e p r o p e l l e r blades. D u r -i n g t h e p e r -i o d 2 0 0 2 - 2 0 0 8 , th-is code, i n i t i a l l y d e v e l o p e d t o t r e a t p r o p e l l e r p r o b l e m s , w a s e x p a n d e d to i n c l u d e a n y 3 D u n s t e a d y i n c o m p r e s s i b l e n o n v i s c o u s f l o w p r o b -l e m a r o u n d a n a r b i t r a r y s y s t e m o f i n t e r a c t i n g n o n - -l i f t i n g / -l i f t i n g r i g i d / f l e x i b l e bodies [ 1 6 , 1 5 ] , F u r t h e r m o r e , i n [ 1 7 ] , t h e r e w a s a f i r s t a t t e m p t t o s y s t e m a t i c a l l y i n v e s t i g a t e t h e e f f e c t o f f l a p p i n g w i n g p r o p u l s o r g e o m e t r y , o n its o p e n w a t e r p e r f o r m a n c e u s i n g t h e same 3 D B E M code. By f u r t h e r d e v e l o p i n g s p e c i a l i z e d data g e n e r a t i o n codes, t h e y p r e s e n t s i m u l a t i o n s o f b i r d f l i g h t [ 1 8 ] a n d i n [ 1 9 ] a p r e -l i m i n a r y i n v e s t i g a t i o n f o r the FOD w a s p r e s e n t e d , t h a t -l e d to t h e p r e s e n t paper. In t h i s p a p e r a n e w p r o p u l s o r c o n c e p t n a m e d FOD is i n t r o d u c e d . H y d r o d y n a m i c p e r f o r m a n c e s i m u l a t i o n s are t h e n u n d e r t a k e n u s i n g t h e a f o r e m e n t i o n e d 3 D - B E M code, f o r a s y s t e m a t i c series o f FODs, a n d t h e c a l c u l a t e d m e a n t h r u s t a n d p o w e r are p l o t t e d i n d i a g r a m s , p r o p e r f o r FOD d e s i g n . Consistency m a t t e r s l i k e g r i d i n d e p e n d e n c e a n d c o n v e r g e n c e o f the o b t a i n e d results are also e x a m i n e d . S y s t e m a t i c r u n s i n c l u d e v a r i a t i o n o f S t r o u h a l n u m b e r a n d p i t c h angle a m p l i t u d e f o r t h e p r e - s e l e c t e d FOD g e o m e t r i e s o f our series. A d e s i g n m e t h o d , t h a t e m p l o y s t h e p r o d u c e d charts, is i n t r o d u c e d a n d used t o calculate t h e p o w e r i n g p e r f o r m a n c e o f t h r e e d i f f e r e n t c o m m o n s h i p t y p e s : a b u l k c a r r i e r , a passen-ger/car f e r r y and a speedboat, e q u i p p e d w i t h a FOD, as t h e i r m a i n p r o p u l s o r . P o w e r i n g p e r f o r m a n c e c a l c u l a t i o n s have also b e e n m a d e f o r t h e s a m e ships e q u i p p e d w i t h a c o n v e n t i o n a l p r o p e l l e r . The c o m p a r i s o n s h o w s t h a t t h e FOD can p r o d u c e h i g h e f f i c i e n c i e s s u p e -rior to t h a t o b t a i n e d w i t h c o n v e n t i o n a l p r o p e l l e r s , g i v i n g t h u s e n c o u r a g i n g results, so t h a t t e c h n i c a l d i f f i c u l t i e s c o n c e r n i n g its c o n s t r u c t i o n s h o u l d be addressed a n d r e s o l v e d . 2. FOD g e o m e t r y , m o t i o n a n d p a n e l g e n e r a t i o n The s t a r t i n g p o i n t f o r a n u n s t e a d y B E M s i m u l a t i o n o f a flexible b o d y is t h e g e n e r a t i o n o f t h e t i m e d e p e n d e n t p a n e l i n g d e s c r i b i n g t h e g e o m e t r y o f t h e s y s t e m [ 1 5 ] . The FOD t i m e d e p e n d e n t g e o m e t r y is p r o d u c e d as d e s c r i b e d b e l o w : W e s t a r t f r o m a c o n v e n t i o n a l 2 - D f o i l m o v i n g p a r a l l e l to the X - a x i s w i t h v e l o c i t y U, w h i c h p e r f o r m s a h e a v i n g m o t i o n ( a l o n g t h e v e r t i c a l V-axis) w i t h a m p l i t u d e ho a n d a p i t c h i n g m o t i o n w i t h a m p l i t u d e OQ ( m e a s u r e d f r o m t h e X - d i r e c t i o n ) a n d a phase angle \p w i t h respect to t h e h e a v i n g m o t i o n . The p i t c h i n g m o t i o n is p e r -f o r m e d a r o u n d a p r e - s e l e c t e d g i v e n p i t c h i n g axis at distance b -f r o m t h e l e a d i n g edge o f the s e c t i o n . B o t h h e a v i n g a n d p i t c h i n g m o t i o n s are p e r f o r m e d w i t h a n g u l a r v e l o c i t y co = 2nn, w h e r e n is t h e c o r -r e s p o n d i n g f -r e q u e n c y . F u -r t h e -r m o -r e , the c a m b e -r o f t h e 2 - D f o i l p e r f o r m s an u n s t e a d y m o r i o n w i t h a c h o r d - w i s e d i s t r i b u t i o n ydt, u ) ( u d e n o t e s the n o n - d i m e n s i o n a l c h o r d - w i s e p o s i t i o n m e a s u r e d f r o m l e a d i n g edge a n d t d e n o t e s t h e t i m e ) , t a k e n e.g. f r o m t h e NACA series, w i t h a n i n s t a n t a n e o u s m a x i m u m c a m b e r m c ( t ) (expressed as a f r a c t i o n o f c h o r d ) . A n o s c i l l a t i n g c a m b e r m o t i o n can t h e n be o b t a i n e d b y d e c i d i n g a b o u t t h e f o r m o f t h e f u n c t i o n mc(t). There are at least t w o possible r e a s o n a b l e selections f o r mdt): ( a ) select mc(t) s u c h t h a t t h e i n s t a n t a n e o u s e f f e c t i v e ( d e f i n e d w i t h respect t o

the t o t a l u n d i s t u r b e d f l o w v e l o c i t y ) angle o f attack o f t h e s e c t i o n is a c e r t a i n ( t i m e i n d e p e n d e n t ) f r a c t i o n o f t h e i n s t a n t a n e o u s i d e a l angle o f a t t a c k o f t h e s e c t i o n (i.e. t h e s e c t i o n o p e r a t e s i n a p e r c e n t -age o f its s h o c k f r e e e n t r y at all times), ( b ) select m c ( t ) t o o s c i l l a t e h a r m o n i c a l l y w i t h t h e same f r e q u e n c y a n d phase as t h a t used f o r the p i t c h i n g m o t i o n , a n d a m a x i m u m p r e d e t e r m i n e d ( u s e r d e f i n e d ) v a l u e mo. It s h o u l d be n o t e d t h a t i n b o t h cases u n s t e a d y m o t i o n o f the c a m b e r surface has t h e same f r e q u e n c y a n d t h e same phase w i t h t h a t o f the p i t c h i n g m o t i o n . O n the o t h e r h a n d , o n l y case ( b ) results i n p u r e h a r m o n i c m o t i o n f o r c a m b e r . W i t h t h e p r e v i o u s d i s c u s s i o n i n m i n d , at each t i m e t, t h e f o i l g e o m e t r y a n d p o s i t i o n i n t h e a f o r e m e n t i o n e d XY p l a n e has been d e f i n e d . T a k i n g a n axis L p a r a l l e l t o t h e X - a x i s , at a d i s t a n c e R a l o n g y - a x i s a n d r o t a t i n g t h e f o i l b y 3 6 0 ° a r o u n d L, t h e FOD c o n f i g u r a t i o n at t h i s t i m e s t e p is o b t a i n e d . R d e f i n e s t h e FOD r a d i u s a n d D = 2 R the FOD d i a m e t e r .

Q u a n t i f y i n g t h e p r e v i o u s discussion, the i n s t a n t a n e o u s angle o f a t t a c k a ( t ) o f a s e c t i o n ( 2 - D f o i l ) o f the FOD, w i t h r e s p e c t t o t h e u n d i s t u r b e d flow ( r e s u l t i n g f r o m t h e p a r a l l e l m o v e m e n t a l o n g X -axis a n d t h e h e a v i n g m o t i o n o f the p i t c h -axis p o i n t ) , is g i v e n b y t h e e q u a t i o n :

1 / / I o 2 7 r i i - c o s ( 2 m 7 - f ) \

a ( f ) = Öo s i n ( 2 m i . t - H i A ) ^ t a n - M - y - j ( 1 )

or i n n o n - d i m e n s i o n a l f o r m :

fi(t) = 00 sin(27rn • f + i ^ ) - t a n - ' ( : T • Str • cos{2nn • f ) ) ( 2 )

w h e r e Str d e n o t e s t h e S t r o u h a l n u m b e r d e f i n e d b y :

Str = ^ ^ , / i = 2;io ( 3 )

a n d h d e n o t e s t h e heave h e i g h t .

F u r t h e r m o r e , a s s u m i n g a NACA f o u r d i g i t c a m b e r d i s t r i b u t i o n , the c a m b e r m o t i o n is d e s c r i b e d b y t h e f o l l o w i n g e q u a t i o n s :

yc{t,u) = mc{tf--^{2p-u), 0<u<p ( 4 )

ydt. It) = m c ( t ) f • ~ V (1 u - 2 • p ) , p < u < l ( 5 ) V ( l - P ) / w h e r e mdt) is the m a x i m u m i n s t a n t a n e o u s c a m b e r as a f r a c t i o n o f c h o r d , p is t h e l o c a t i o n o f m a x i m u m c a m b e r (as a f r a c t i o n o f t h e c h o r d ) a n d u is t h e n o n - d i m e n s i o n a l c h o r d - w i s e p o s i t i o n [ 1 ] . A f t e r t h i s , i t is possible t o calculate t h e t i m e e v o l u t i o n o f m a x i m u m c a m b e r f o r t h e cases (a) a n d ( b ) discussed p r e v i o u s l y . For case (a) the i n s t a n t a n e o u s m a x i m u m c a m b e r is g i v e n b y :

ƒ • 0 ( 0 • p 2 ( - p + 1 ) ^ 7 1

' ~ 2 ( p - ( l / 2 ) ) ( p 2 ; T -2p& + &^ sin(!?)) ( 6 ) !? = a c o s ( l - 2 p ) w h e r e a ( t ) is c a l c u l a t e d f r o m ( 2 ) a n d ƒ is a t i m e i n d e p e n d e n t c o r -r e c t i o n f a c t o -r ( e s t i m a t e d h e u -r i s t i c a l l y ) b y w h i c h t h e i n s t a n t a n e o u s c a m b e r p a r t i a l l y r e p r e s e n t s t h e i d e a l c a m b e r . R e l a t i o n ( 6 ) is p r o -d u c e -d b y a p p l y i n g t h e f o r m u l a f o r t h e i -d e a l angle o f a t t a c k t o t h e c a m b e r l i n e ( 4 ) a n d ( 5 ) [ 1 ] . For case ( b ) t h e i n s t a n t a n e o u s m a x i m u m c a m b e r is g i v e n b y : j7ic(t) = mo s i n ( 2 j r i i • t + t/f) ( 7 ) w i t h mo h e u r i s t i c a l l y selected b y t h e designer. H a v i n g i n t r o d u c e d t h e a n a l y t i c a l d e s c r i p t i o n o f b o t h g e o m e t r y a n d m o t i o n o f o u r FOD, t h e c r e a t i o n o f a s u r f a c e p a n e l d i s t r i b u t i o n d e s c r i b i n g t h e FOD at c o n s e c u t i v e t i m e steps is s t r a i g h t f o r w a r d .

Fig. 1 s h o w s the panel d i s c r e t i z a t i o n o f t h e FOD at n i n e time instances, c o r r e s p o n d i n g to t h e m a x i m u m , m i n i m u m a n d i n f l e c t i o n p o i n t p o s i t i o n s o f a FOD s e c t i o n i n one p e r i o d . Fig. 2 s h o w s t h e

(3)

38 G. Poliüs, V. Tsarsitalidis / Applied Ocean Research 36 (2012) 36-50

Fig. 1. Panel discretization at selected time steps.

s e c t i o n o f ttie FOD w i t t i a plane c o n t a i n i n g t l i e X-axis f o r ttie same t i m e instances.

W i t t i ttie FOD p a n e l i n g i n t i m e I m o w n , t l i e u n s t e a d y BEM code [15] can be a p p l i e d t o calculate the FOD u n s t e a d y forces, energy r e q u i r e m e n t s a n d f r e e shear layer e v o l u t i o n .

3. C a l c u l a t i o n of forces, m o m e n t s , p o w e r a n d e f f i c i e n c y

I n t h e case o f a f l e x i b l e b o d y , e n e r g y is t r a n s f e r r e d t h r o u g h f l e x i b i l i t y i n a p o i n t - w i s e m a n n e r . The u n s t e a d y BEM code uses a specialized p r o c e d u r e f o r t h e c a l c u l a t i o n o f the p o w e r p r o v i d e d to t h e FOD m e c h a n i s m , t e r m e d DHP ( D e l i v e r e d Horse P o w e r ) a n d the p o w e r d e v e l o p e d b y the FOD t o p r o p e l t h e s h i p , t e r m e d EHP ( E f f e c -t i v e Horse P o w e r ) . The c o r r e s p o n d i n g m e -t h o d o l o g y has already been a p p e a r e d in [ 1 7 ] and w i l l be repeated here f o r c o m p l e t e n e s s . Let A a p o i n t b e l o n g i n g t o t h e surface S o f a b o d y o f o u r s y s t e m . Let F ( t ) d e n o t e the t o t a l f o r c e e x e r t e d b y t h e f l u i d t o t h e b o d y at A.

Y

Fig. 2. XY section of ttie nine positions of the FOD.

This f o r c e is a s u m o f pressure forces n o r m a l to b o d y d e n o t e d b y P ( f ) a n d viscous forces t a n g e n t i a l to b o d y d e n o t e d b y D(t)- Thus:

F{t)=:P{t) + D{t) ( 8 ) Let also ï)(t) d e n o t e the v e l o c i t y o f A w i t h respect t o an i n e r t i a

r e f e r e n c e f r a m e . Consider also a n i n s t a n t a n e o u s parallel v e c t o r f i e l d d ( t ) w i t h d a u n i t v e c t o r . A c c o r d i n g to a w e l l - k n o w n v e c t o r i d e n t i t y ( i t i s t h e r e s u l t of: I^A xB) x C = B{A • C) - C(A • B) b y s e t t i n g A = C = d.B = ll),

v = {d-ïi)-d + id xv)xd ( 9 ) The p o w e r done f r o m the f l u i d t o t h e b o d y at A is g i v e n b y :

p o w ( t ) = F ( t ) . m = Cm • d m m • m ) +F{t)-mt)xm)xd{t)) ( 1 0 ) a n d t h e n e t p o w e r f r o m a s y s t e m o f f l e x i b l e bodies (S denotes t h e t o t a l s y s t e m b o u n d i n g surface) is g i v e n b y : n e f - p o w ( r ) = / Fit) • v{t) • dS = / ( F ( t ) • d ( t ) ) ( d ( t ) • i } ( f ) ) • dS + [ F ( f ) { ( d ( r ) x P ( f ) ) x d ( f ) ) . d S ( 1 1 ) In p r o p u l s i o n p r o b l e m s t h e r e is a l w a y s a p r e f e r a b l e i n s t a n t a -neous d i r e c t i o n a l o n g w h i c h t h e s y s t e m m o v e s . For t h e FOD case, t h i s is t h e X-axis d i r e c t i o n . Take d a l o n g t h i s d i r e c t i o n . T h e n t h e f i r s t t e r m i n t h e rhs ( r i g h t h a n d side) o f Eq. ( 1 1 ) is t h e i n s t a n t a -neous EHP a n d the second t e r m is t h e i n s t a n t a n e o u s DHP. The r a t i o EHP/DHP defines t h e i n s t a n t a n e o u s e f f i c i e n c y . For the a p p l i c a t i o n o f the p r e v i o u s f o r m u l a s t h e p r e s s u r e forces o n e l e m e n t c e n t r o i d s can be c a l c u l a t e d f r o m t h e u n s t e a d y B e r n o u l l i e q u a t i o n [ 1 5 ] . The code also contains a s i m p l e s u b r o u t i n e f o r t h e c a l c u l a t i o n o f viscous forces u s i n g an e l e m e n t a l surface d r a g c o e f f i c i e n t , w h i c h depends o n t h e local Reynolds n u m b e r w i t h a d r a g c o r r e c t i o n f o r an e s t i -m a t e d sectional angle o f attack greater t h a t t h e i d e a l .

4. T h e o r e t i c a l f o r m u l a t i o n a n d s o l u t i o n o f the F O D p r o p u l s o r design p r o b l e m

FOD p r o p u l s o r d e s i g n p r o b l e m consists i n finding t h e p r o p u l s o r g e o m e t r i c a n d m o t i o n characteristics b y w h i c h i t can p r o p e l a g i v e n s h i p w i t h a g i v e n s h i p speed. F r o m all possible design s o l u t i o n s , sat-i s f y sat-i n g t h e c o n s t r a sat-i n o f a g sat-i v e n s h sat-i p speed; t h e r e sat-is a n o p t sat-i m u m one, w h i c h succeeds t h i s w i t h a m i n i m u m d e l i v e r e d p o w e r . A l t h o u g h t h e o p t i m u m p r o p u l s o r p r o b l e m is a p r o b l e m o f m u t u a l p r o p u l -s o r / -s t e r n o p t i m i z a t i o n , i n m o -s t ca-se-s w e o p t i m i z e t h e p r o p u l -s o r a s s u m i n g that t h e h u l l / s t e r n g e o m e t r y is g i v e n . D e v e l o p m e n t o f a design t h e o r y f o r a n e w p r o p u l s o r , r e q u i r e s decisions r e g a r d i n g the i n d e p e n d e n t g e o m e t r i c / m o t i o n variables c o n t r o l l i n g the t h r u s t p r o d u c t i o n a n d t h e e n e r g y a b s o r p t i o n . For-t u n a For-t e l y , For-t h e p r o p o s e d FOD s y s For-t e m is a g e n e r a l i z a For-t i o n o f For-t h e w e l l - d e v e l o p e d flapping w i n g . Thus, t h e c o r r e s p o n d i n g decisions are s t r a i g h t - f o r w a r d as f o l l o w s :

I n d e p e n d e n t variables b y w h i c h t h e state o f t h e FOD is d e f i n e d u n i q u e l y can be d e c o m p o s e d i n t w o g r o u p s . G r o u p A c o n t a i n s the g e o m e t r i c variables and G r o u p B c o n t a i n s t h e m o t i o n r e l a t e d v a r i -ables. Group A: A s s u m i n g g e o m e t r i c a l s i m i l a r i t y , a m i n i m u m set o f p a r a m e t e r s d e f i n i n g flexible v i b r a t i n g d u c t p r o p u l s o r g e o m e t r y is t h e s e c t i o n c h o r d c, the c h o r d - w i s e p o s i t i o n o f t h e p i t c h i n g axis b, t h e d u c t m e a n radius R ( d e f i n e d at t h e p o s i t i o n o f s e c t i o n a l p i t c h i n g axis) or e q u i v a l e n t l y the d u c t m e a n d i a m e t e r D. In n o n - d i m e n s i o n a l f o r m , FOD g e o m e t r y is c h a r a c t e r i z e d by: (R/c, bjc). I t s h o u l d be n o t e d t h a t t h e f o i l s e c t i o n g e o m e t r y ( t h i c k n e s s a n d c a m b e r f o r m s )

(4)

G. Politis, V. Tsarsitalidis/ApiJlied Ocean Research 36 (2012) 36-50 39

has been i n t e n t i o n a l l y n o t i n t r o d u c e d as a m a i n g e o m e t r i c p a r a m -eter f o r the FOD, since i t m a i n l y c o n t r o l s p h e n o m e n a l i k e viscous pressure drag, as w e l l as s e p a r a t i o n (at larger angles o f a t t a c k ) , a n d n o t t h e FOD t h r u s t and p o w e r (i.e. exerts a s e c o n d a r y e f f e c t o n t h r u s t a n d p o w e r ) .

Group B: FOD m o t i o n is d e f i n e d b y : ( i ) t h e FOD v e l o c i t y o f

advance U, ( i i ) t h e a m p l i t u d e ho o f a s i n u s o i d a l h e a v i n g m o t i o n o f each s e c t i o n n o r m a l to t h e v e l o c i t y o f advance Lf, ( i i i ) the a m p l i t u d e do o f a s i n u s o i d a l p i t c h i n g m o t i o n , ( i v ) the a m p l i t u d e mdt) o f t h e c a m b e r d e f o r m a t i o n , ( v ) t h e f r e q u e n c y n ( c o m m o n to b o t h h e a v -i n g , p -i t c h -i n g m o t -i o n s a n d c a m b e r d e f o r m a t -i o n s ) , a n d ( v -i ) t h e phase angle ij/ b e t w e e n h e a v i n g a n d p i t c h i n g / c a m b e r m o t i o n s . A s s u m i n g t h a t t h e c a m b e r d e f o r m a t i o n has b e e n selected as i n (a)-Section 1, t h e m o t i o n o f FOD is c o m p l e t e l y d e f i n e d b y the f o l l o w i n g d i m e n -s i o n a l v a r i a b l e -s : (U, ho, 9o,f, n, xj/). I n ca-se c a m b e r ha-s been -selected as i n ( b ) - S e c t i o n 1, the m o t i o n o f FOD is d e f i n e d b y : (Lf, ho, 9o, mo, n, r j f ) . I n t h e sequel, mo, ƒ are o m i t t e d f o r the sake o f s i m p l e r f o r m a l -i s m , -i n t r o d u c -i n g -i t o n l y w h e n n e e d e d . U s -i n g d -i m e n s -i o n a l analys-is, t h e n o n - d i m e n s i o n a l p a r a m e t e r s c o n t r o l l i n g FOD p e r f o r m a n c e can be o b t a i n e d : (OQ, hole, Str, f ) . A s s u m i n g f u r t h e r t h a t \jf=m°, t h r e e n o n - d i m e n s i o n a l p a r a m e t e r s c o n t r o l l i n g t h e FOD m o t i o n r e m a i n : (Ö0, hole Str).

R e c a p i t u l a t i n g t h e discussion u n d e r ( A ) a n d (B), the FOD p e r -f o r m a n c e is c o n t r o l l e d b y t h e -f o l l o w i n g g e o m e t r i c a n d m o t i o n p a r a m e t e r s : {OQ, Str, hole, Rjc, bjc). N o t i c e t h a t t h e f o l l o w i n g c o n -c e p t u a l -c o u p l i n g b e t w e e n n o n - d i m e n s i o n a l p a r a m e t e r s used i n t h e FOD a n d t h e c o n v e n t i o n a l p r o p e l l e r can b e e n m a d e (P/D denotes t h e p r o p e l l e r p i t c h r a t i o , AEIAQ denotes p r o p e l l e r blade area r a t i o , D u n d e r t h e ( p r o p e l l e r ) c o l u m n denotes p r o p e l l e r d i a m e t e r , CQJR d e n o t e s blade c h o r d at 70% o f p r o p e l l e r r a d i u s ) : FOD R P r o p e l l e r P Po.7R A f Ao ( 1 2 )

A w e l l - p o s e d p r o p u l s i o n p r o b l e m f o r a FOD p r o p u l s o r can be set as f o l l o w s :

Calculate the t i m e d e p e n d e n t o p e n w a t e r FOD p e r f o r m a n c e u s i n g the BEM code f o r a range o f t h e p a r a m e t e r s {9o, Str) a s s u m -i n g g -i v e n {hole, Rjc, bjc). Calculate t h e n t h e p e r -i o d - m e a n values f o r t h r u s t a n d d e l i v e r e d p o w e r a n d d e n o t e t h e m b y : T a n d DHP, respec-t i v e l y . FOD p e r f o r m a n c e can respec-t h e n be expressed b y respec-the f o l l o w i n g n o n - d i m e n s i o n a l ( m e a n ) t h r u s t a n d ( d e l i v e r e d ) p o w e r c o e f f i c i e n t s : CT C p 0.5pU^S DHP O S p Ï P S CT h , s t , , , , -( R ho b ( 1 3 ) ( 1 4 )

w h e r e S denotes t h e m e a n FOD disc surface (=7r R2). I n self-p r o self-p u l s i o n c o n d i t i o n s , w e a s s u m e t h a t a T a y l o r w a k e f r a c t i o n w is d e f i n e d b y :

U = V ( l - w) ( 1 5 )

w h e r e Vis the ship speed. F u r t h e r m o r e a r e l a t i v e r o t a t i v e e f f i c i e n c y r]R is d e f i n e d b y : >1R DHP D H p ; ( 1 6 ) w h e r e DHPg denotes t h e ( p e r i o d - m e a n ) p o w e r d e l i v e r e d to t h e FOD i n s e l f - p r o p u l s i o n c o n d i t i o n s . A s s u m i n g f u r t h e r t h a t a ' t h r u s t e q u a l i z a t i o n m e t h o d ' has b e e n used f o r t h e d e t e r m i n a t i o n o f FOD-h u l l i n t e r a c t i o n c o e f f i c i e n t s w , t, i]^ ( w FOD-h e r e t denotes t FOD-h e t FOD-h r u s t d e d u c t i o n f a c t o r ) , t h e FOD t h r u s t a n d p o w e r , i n t h e s e l f - p r o p u l s i o n c o n d i t i o n s b e c o m e s : rB = T = 0 . 5 p ( \ / ( l - w ) ) ' S CT Ö, DHPB)JR = 0 . 5p( \ / ( 1 - w ) ) ^ S . C p (^0, n • 2ho R ho b V ( l - ^ w ) ' c ' T ' c n • 2ho R liQ b c ' c ( 1 7 ) ( 1 8 ) 1/(1 - w ) ' For a s e l f p r o p e l l e d h u l l , m o v i n g w i t h v e l o c i t y V, t h e s u r r o u n d -i n g flu-id -i n t e r a c t s w -i t h t h e h u l l d e v e l o p -i n g a res-istance f o r c e : ' ^ o ( ^ / ( l - 1 ) , w h e r e Ro(^) denotes t h e h u l l t o w i n g resistance. A h u l l can also p u l l an o b j e c t w i t h a f o r c e F(case o f a t u g - b o a t or a t r a w l e r ) . T h e n the FOD t h r u s t , u n d e r s e l f - p r o p u l s i o n c o n d i t i o n s , is g i v e n b y :

T a. F ( 1 9 )

A s s u m i n g t h a t V, 9o, c, R, ho, b, w , t, Ï;R are k n o w n p a r a m e t e r s , Eqs. ( 1 7 ) ( 19) b e c o m e a n o n l i n e a r s y s t e m o f t h r e e algebraic e q u a -t i o n s w i -t h -t h r e e u n k n o w n s : (T, D H P B , n). T h i s s y s -t e m can be s o l v e d f o r a range o f s h i p speeds: V e ( V i , V2) and p i t c h angles: ÖQ e ( ö o _ a , 9o-b). Thus, t h e t o t a l i t y o f d e s i g n s o l u t i o n s f o r the g i v e n s h i p is o b t a i n e d :

DHPs(\/, f^o). n{V, 9o) *- Igiven : s h i p , c, R, ho, w, t, ( 2 0 )

The c o n t e n t o f Eq. ( 2 0 ) can be r e p r e s e n t e d i n a 2 D DHPg n d i a -g r a m i n t h e f o r m o f p a r a m e t r i c curves o f c o n s t a n t V a n d c o n s t a n t (?o-N o t i c e t h a t t h i s p r e s e n t a t i o n is s i m i l a r t o t h a t used i n c o n v e n t i o n a l p r o p e l l e r s , w h e r e t h e p r o p e l l e r p i t c h r a t i o P/D is t a k i n g t h e place o f (?o U s i n g t h i s p r e s e n t a t i o n , w e can finally e x t r a c t t h e r e q u i r e d o p t i -m u -m FOD b y s e l e c t i n g t h e characteristics ( g e o -m e t r i c a n d -m o t i o n ) w h i c h r e q u i r e t h e m i n i m u m DHPg f o r the g i v e n s h i p speed V.

5. D e c i s i o n s r e g a r d i n g G e o m e t r i c a n d F l o w / m o t i o n v a r i a b l e s f o r t h e p r o p o s e d F O D series.

To p r o c e e d to a series based design process f o r a FOD, decisions have to be t a k e n , o n t h e c o r r e s p o n d i n g g e o m e t r i c a n d flow r e l a t e d p a r a m e t e r s . I n l i n e w i t h t h e discussion o f t h e p r e v i o u s s e c t i o n , t h e series s h o u l d c o n s i s t o f f o u r d i f f e r e n t FOD g e o m e t r i e s , t e r m e d i n the sequel as Cases 1-4, as f o l l o w s :

Case 1: hole = 1.0 w i t h NACA 0 0 1 2 s e c t i o n ( n o c a m b e r ) .

Case 2 : holc=\.Q w i t h NACA 6 4 1 2 s e c t i o n a n d t i m e d e p e n d e n t m a x i m u m c a m b e r a c c o r d i n g t o Eq. ( 7 ) .

Case 3: /7o/c= 1.5 w i t h NACA 0 0 1 2 s e c t i o n ( n o c a m b e r ) ,

Case 4 : / i o / c = 1 . 5 w i t h NACA 6412 section a n d t i m e d e p e n d e n t m a x i m u m c a m b e r a c c o r d i n g to Eq. ( 7 ) .

O t h e r series g e o m e t r i c data have b e e n selected c o n s t a n t , as f o l -l o w s : mo = 0.04 i n r e -l a t i o n ( 7 ) a n d R/c = 3 ( w h e r e R is t h e m e a n FOD radius m e a s u r e d at t h e p o s i t i o n o f p i t c h i n g axis w h i c h have been selected at 1 /3 c h o r d f r o m l e a d i n g edge, i.e. b/c = 1 / 3 ) .

R e g a r d i n g flow/motion r e l a t e d variables the S t r o u h a l n u m b e r has b e e n selected i n t h e range: Str=0.\5~0.7. U s i n g o u r p r e v i o u s experience, g a i n e d f r o m flapping w i n g s , this s e l e c t i o n is e x p e c t e d to c o n t a i n t h e r e g i o n o f FOD m a x i m u m h y d r o d y n a m i c e f f i c i e n c y . F i n a l l y the r a n g e o f t h e p i t c h angle has b e e n selected f r o m 5 ° to a m a x i m u m value, w h i c h depends o n the S t r o u h a l n u m b e r . This m a x i m u m v a l u e o f t h e p i t c h angle has b e e n p r o p e r l y selected t o r e s u l t i n a t h r u s t p r o d u c i n g FOD. 6. T r a n s i e n t F O D p e r f o r m a n c e a n d s e l e c t i o n of s i m u l a t i o n p e r i o d The m a i n d i f f e r e n c e b e t w e e n a t r a d i t i o n a l p r o p e l l e r a n d a FOD is t h a t t h e FOD p r o d u c e s a p e r i o d m e a n t h r u s t as a r e s u l t o f a h i g h l y u n s t e a d y i n s t a n t a n e o u s t h r u s t . The s i m u l a t i o n m e t h o d i n h a n d can

(5)

40 C. Politis. V. Tsarsitalidis/ AppUed Ocean Research 36 (2012) 36-50

20 10 60

Fig. 6. Time e v o l u t i o n of thrust for {Case 3, Str=0.56, theta = 23.5}.

Fig. 3. Time evolution of t h r u s t for {Case 1, Str=0.29, theta = 23.54}.

7. W a k e v i s u a l i z a t i o n s • p r o d u c e s t h r u s t

U n d e r s t a n d i n g h o w t h e F O D

Fig. 4. Time evolution of t h r u s t for {Case l , S f r = 0 . 4 2 , theta = 24.27).

p r o d u c e t h i s t i m e d e p e n d e n t t h r u s t b u t , since i t is a t i m e s t e p p i n g m e t h o d , i n i t i a l c o n d i t i o n s o n FOD m o t i o n have t o be i m p o s e d . A b u r s t s t a r t i n g FOD is used as the s t a r t i n g c o n d i t i o n . I n t h i s case a t r a n s i e n t p h e n o m e n o n occurs. Thus t h e m e a n p e r i o d values f o r t h r u s t or p o w e r have to be c a l c u l a t e d a f t e r the passage o f this i n i t i a l t r a n s i e n t p h e n o m e n o n . To care f o r this, t i m e d o m a i n s i m u l a t i o n s have b e e n p e r f o r m e d f o r t w o periods and f o r t h e f o l l o w i n g s e l e c t i o n o f FOD state v a r i a b l e s ( g e o m e t r y a n d m o t i o n ) :

(I) {Case l , S t r = 0,29, t h e t a = 2 3 . 5 4 } (II) {Case 1, S t r = 0 . 4 2 , t h e t a = 2 4 . 2 7 } (III) {Case 2, S t r = 0 . 5 6 , t h e t a = 2 3 . 5 0 } ( I V ) {Case 3, S t r = 0 . 4 2 , t h e t a = 2 4 . 2 7 }

Results f o r the t i m e d e p e n d e n t FOD t h r u s t f o r c e Fx are s h o w n i n Figs. 3 - 6 r e s p e c t i v e l y w h e r e p denotes the f l u i d d e n s i t y . F r o m those f i g u r e s w e c o n c l u d e that, f o r t h e selected parameters, t h e t r a n s i e n t p h e n o m e n o n is l i m i t e d t o the f e w i n i t i a l t i m e steps a f t e r the b u r s t start. Thus w e can s a f e l y use t h e 2 n d p e r i o d o f s i m u l a -t i o n , -t o calcula-te -t h e m e a n FOD -t h r u s -t a n d p o w e r -t o be used i n o u r d e s i g n charts. N o t i c e t h a t a c c o r d i n g to o u r t h r u s t s i g n c o n v e n t i o n s , a n e g a t i v e t h r u s t f o r c e Fx is a p r o p e l l i n g f o r c e , c o n v e n t i o n w h i c h is used i n all f u t u r e charts s i m i l a r to Fig. 3.

For a b e t t e r u n d e r s t a n d i n g o f the u n d e r l y i n g p h y s i c a l m e c h -anisms o f FOD's t h r u s t p r o d u c t i o n , the w a k e f r e e shear l a y e r is p l o t t e d , f o r a range o f t h e FOD state variables, r e p r e s e n t a t i v e o f o u r series d e s c r i b e d i n Section 5. M o r e s p e c i f i c a l l y w e p r e s e n t t w o g r o u p s o f results. For t h e f i r s t g r o u p w e have selected a d e f i n i t e c o m b i n a t i o n o f s t a t e v a r i a b l e s : { C a s e l , S t r = 0 . 4 2 , t h e t a = 2 4 . 2 7 } a n d p r e s e n t instances o f the w a k e e v o l u t i o n at the f o l l o w i n g six c o n -secutive t i m e steps: { T / 2 , T, 3T/2, 2T, 51/2. 3T} w h e r e T d e n o t e s t h e s i m u l a t i o n p e r i o d . Fig. 7 s h o w s t h e FOD t h r u s t as a f u n c t i o n o f t i m e , w i t h v e r t i c a l bars a t the p o i n t s w h e r e w a k e snapshots have b e e n taken. Figs. 8 ( p e r s p e c t i v e v i e w ) a n d 9 ( t o p v i e w ) s h o w t h e FOD and c o r r e s p o n d i n g w a k e snapshots, at t h e selected t i m e steps. The FOD surface a n d t h e f r e e v o r t e x sheet surface o n t h o s e f i g u r e s h a v e been c o l o r e d a c c o r d i n g t o t h e i r surface d i p o l e d i s t r i b u t i o n i n t e n -sity. N o t i c e t h a t c o n s t a n t d i p o l e lines c o i n c i d e w i t h s u r f a c e v o r t e x lines. By u s i n g e i t h e r the last p r o p e r t y or t h e d e f o r m a t i o n p a t t e r n s of t h e f r e e v o r t e x sheets, a n u m b e r o f s t r o n g r i n g v o r t i c e s i n t h e w a k e o f t h e FOD are m a d e recognizable. Those r i n g v o r t i c e s p r o -duce series o f o b l i q u e j e t f l o w s b y w h i c h t h e FOD p r o d u c e s t h r u s t . Fig. 10 s h o w s a slice w i t h a c o n s t a n t - Y p l a n e o f t h e FOD f r e e v o r t e x sheet f o r t h e six t i m e steps considered, w h i l e Fig. 11 c o n c e n t r a t e s o n t h e slice a t f = 3T. Fig. 11 also c o n t a i n s a r t i s t i c add-ons, s h o w i n g the t r a i n o f r i n g v o r t i c e s ( c u r v e d a r r o w s ) a n d c o r r e s p o n d i n g j e t s ( s t r a i g h t a r r o w s ) b y w h i c h t h e FOD p r o d u c e s t h r u s t . M o r e s p e c i f -ically t h e s t r a i g h t a r r o w s are the r e s u l t s o f t h e i n d u c e d v e l o c i t i e s p r o d u c e d b y t h e r i n g v o r t i c e s . N o t i c e also the a n a l o g y o f t h e v o r -tex p i c t u r e s h o w n i n t h e slice o f Fig. 11 w i t h t h e reverse K a r m a n v o r t e x street w a k e a p p e a r i n g i n a q u a t i c a n i m a l a n d / o r b i r d f l a p -p i n g f o i l -p r o -p u l s o r s [ 2 3 ] . By s t u d y i n g t h e e v o l u t i o n o f t h e FOD at c o n s e c u t i v e g e o m e t r i c p o s i t i o n s , i t is s h o w n t h a t t h e m a x i m u m angle o f a t t a c k d u r i n g FOD c o n t r a c t i o n a n d d u r i n g FOD e x p a n s i o n occurs at a s y m m e t r i c FOD g e o m e t r i e s . M o r e s p e c i f i c a l l y , d u r i n g the e x p a n s i o n phase o f the FOD m o t i o n , t h e l e a d i n g edge d i a m e t e r is greater t h a n the c o r r e s p o n d i n g d i a m e t e r d u r i n g t h e c o n t r a c t i o n phase. As a r e s u l t t h e local m a x i m u m o f t h r u s t forces Fx d u r i n g

-0,5

t

-1 LL -1,5 A

/ \

' \

/

/

/

/

\

J \

1 \

/

\

\ 1 ^

J

1 /

\

1 v i . - 1 . , 1 50 100 150 200 250 300

Fig. 5. Time evolution of t h r u s t for {Case 2, Str=0.42, theta = 24.27),

Its

Fig. 7. Time e v o l u t i o n of FOD thrust for {Case 1 , S f r = 0.42, theta = 24.27).The vertical lines indicate the times o f t h e snapshots taken.

(6)

C. Poliüs. V. Tsarsitalidis / Applied Ocean Research 36 (2012) 36-50 41

Fig. 8. Wake visualizations for (Case 1, Str=0.42. theta = 24.27}, at {1/2, T, 3T/2, 21, 5T/2, 3T), respectively. Perspective v i e w .

FOD e x p a n s i o n is greater t h a n t h e c o r r e s p o n d i n g local m a x i m u m d u r i n g FOD c o n t r a c t i o n . Fig. 7.

For t h e s e l e c t i o n o f t h e second g r o u p o f w a k e v i s u a l i z a t i o n s , w e d e c i d e t o trace t h r o u g h the g e o m e t r y o f a l l f o u r d e s i g n cases (i.e. Cases 14, S e c t i o n 5), s e l e c t i n g f o u r d i f f e r e n t S t r o u h a l n u m -bers f o r e a c h case: S t r = { 0 . 1 5 , 0.29, 0.42, 0,56} a n d t w o d i f f e r e n t p i t c h a n g l e s f o r each S t r o u h a l n u m b e r . The t w o selected p i t c h -angles are p r o p e r l y S t r o u h a l d e p e n d e n t , i n o r d e r to r e p r e s e n t a l o w e r FOD l o a d i n g a n d a h i g h e r FOD l o a d i n g f o r each g i v e n S t r o u h a l . Figs. 1 2 - 2 7 p r e s e n t 7 = 0 slices o f the f r e e v o r t e x sheet g e o m e t r y at t = 2 1 , f o r all the s i x t e e n c o m b i n a t i o n s o f g e o m e t r y a n d S t r o u h a l

n u m b e r . Each f i g u r e c o n t a i n s t w o w a k e slices, t h e f i r s t ( d a s h e d l i n e ) c o r r e s p o n d s to t h e h i g h e r FOD l o a d i n g ( s m a l l e r p i t c h - a n g l e ) w h i l e t h e second ( s o l i d l i n e ) to t h e l i g h t e r l o a d i n g (greater p i t c h a n g l e ) .

F r o m those figures w e observe t h a t f o r a s m a l l e r OQ ( w h i c h m e a n s a h i g h e r angle o f a t t a c k ) a w i d e r w a k e is d e v e l o p e d . This p r e -s u m e -s -s t r o n g e r i n d u c e d v e l o c i t i e -s a n d t h u -s h i g h e r l o a d i n g . Al-so, b y a w a k e i n s p e c t i o n b e t w e e n t h e figures, i t is s h o w n t h a t i n c r e a s i n g the S t r o u h a l n u m b e r the l o a d i n g is i n c r e a s e d . R e g a r d i n g t h e e f f e c t o f a n o n - z e r o c a m b e r (Cases 2 a n d 4 ) t h e w a k e s u r v e y / c o m p a r i s o n s h o w s o n l y s l i g h t d i f f e r e n c e s w i t h t h e n o n - c a m b e r case f o r s i m i l a r S t r o u h a l a n d p i t c h angle c o n d i t i o n s .

(7)

42 G. Politis. V. Tsarsitalidis I Applied Ocean Research 36 (2012) 36-50

Fig. 10. Wake visualizations for (Case 1, Str=0.42, theta = 24.27), at ( 7 / 2 , 7 37/2,27,57/2, 37), respectively. Slice w i t h t h e X Z plane.

8. T h e o p e n w a t e r p e r f o r m a n c e d i a g r a m s f o r o u r FOD s e r i e s

S y s t e m a t i c u n s t e a d y BEIM s i m u l a t i o n s have b e e n p e r f o r m e d w i t h t h e selected FOD series d e s c r i b e d i n Section 5. In all s i m u l a -t i o n s a c h o r d o f c = 0.15 m has been selec-ted. V a r i a -t i o n o f S -t r o u h a l n u m b e r has b e e n a c h i e v e d b y c h a n g i n g t h e f r e q u e n c y o f t h e FOD o s c i l l a t i o n w h i l e t h e c o r r e s p o n d i n g t r a n s l a t i o n a l v e l o c i t y has been h e l d c o n s t a n t a n d e q u a l to V = 2 . 0 m / s . This results to a c o n s t a n t R e y n o l d s n u m b e r (based o n t r a n s l a t i o n a l v e l o c i t y ; Re = ( L / - c ) / v ) e q u a l t o Re = 0.263 • 10^. C o r r e s p o n d i n g Reynolds n u m b e r s based o n t h e m a x i m u m u n d i s t u r b e d f l o w v e l o c i t y are S t r o u h a l d e p e n -d e n t a c c o r -d i n g to t h e r e l a t i o n ; Rest;- = ( ( U • c)/v)\/1 4- (JT • S t r f , o r Restr = 0.291 •10'^ at S t r = 0 , 1 5 and Restr = 0 . 6 3 6 • 10^ at S'tr=0.7

V o r t e x C o r e

J

-1 z

Vortex direction

Induced jet

Fig. 11. Slice of the FOD wake at t = 3 7 f ü r { C a s e 1, Str = 0.42, theta = 24.27). Artistic add-ons s h o w i n g the train o f ring vortices and corresponding jets by w h i c h the FOD produces thrust.

( a s s u m e d k i n e m a t i c v i s c o s i t y y = 1.139 • 10"^ m ^ / s ) . M e a n t h r u s t a n d p o w e r have t h e n b e e n c a l c u l a t e d b y r u n n i n g the BEM code for t w o t i m e p e r i o d s a n d c a l c u l a t i n g t h e m e a n values o f t h e u n s t e a d y forces o v e r t h e second p e r i o d (see Section 6 ) . The results are p r e s e n t e d i n t h e f o r m o f CJ-OQ d i a g r a m s ( w h e r e 00 t h e t a i n d i a g r a m s ) (Figs. 2 8 , 3 0 , 3 2 a n d 3 4 ) a n d Cp-t^o d i a g r a m s (Figs. 2 9 , 3 1 , 3 3 a n d 3 5 ) w i t h p a r a m e t e r t h e S t r o u h a l n u m b e r ( t h i c k l i n e i n t h e d i a g r a m s ) .

(8)

G. Politis. V. Tsarsitalidis / Applied Ocean Research 36 (2012) 3 6 - 5 0 43

Fig. 13. Case 1, Wakes for 5tr=0.29 and theta = 5 (dashed) and 23.54 (solid).

Figs. 28, 30, 3 2 and 3 4 c o n t a i n a d d i t i o n a l l y i n p a r a m e t r i c f o r m ( t h i n l i n e s ) the o p e n w a t e r e f f i c i e n c y i] o f the FOD:

Also, Figs. 29, 3 1 , 33 a n d 35 c o n t a i n a d d i t i o n a l l y i n p a r a m e t r i c f o r m t h e amax angle ( t h i n l i n e s ) d e f i n e d as the m a x i m u m v a l u e o f a( t), r e l a t i o n (2), over one p e r i o d . This last i n f o r m a t i o n is v e r y u s e f u l f o r t h e designer i n o r d e r t o a v o i d m a x i m u m angles w i t h a p o t e n -t i a l d a n g e r f o r s e p a r a -t i n g f l o w (e.g. grea-ter -t h a n 2 0 ° ) , p h e n o m e n o n w h i c h is n o t m o d e l e d b y o u r m e t h o d a n d c o n s e q u e n t l y o u r BEM s i m u l a t i o n s can r e s u l t i n q u e s t i o n a b l e a n d / o r i n c o r r e c t p r e d i c t i o n s i n t h a t r e g i o n . z

Fig. 14. Case 1, Wakes for Str=0.42 and theta = 14.63 (solid) and 43.53 (dashed).

Fig. 15. Case 1, Wakes for S f r = 0 . 5 6 and theta = 14.25 (dashed) and 32.75 (solid).

I n t e r e s t i n g c o n c l u s i o n s d r a w n f r o m those f i g u r e s are t h e f o l l o w -i n g : ( a ) t h e r e -is a r e l a t -i v e l y w -i d e r e g -i o n o f m a x -i m u m h y d r o d y n a m -i c FOD e f f i c i e n c y w h i c h is a c h i e v e d at a m a x i m u m angle o f a t t a c k less t h a n 1 5 ° i.e. at t h e r e g i o n o f f l o w w i t h o u t e x p e c t e d s e p a r a t i o n , ( b ) FODs w i t h a d d i t i o n a l u n s t e a d y c a m b e r m o t i o n (Cases 2 a n d 4 ) increase b o t h the p r o d u c e d t h r u s t a n d t h e e f f i c i e n c y . It s h o u l d be also n o t e d t h a t s y s t e m a t i c i n s p e c t i o n s o f t h e c a l c u l a t e d p r e s -sure d i s t r i b u t i o n s gave no i n d i c a t i o n o f local pres-sure less t h a n t h e c o r r e s p o n d i n g v a p o r pressure i n t h e r e g i o n a r o u n d o p t i m u m p e r f o r m a n c e . As a r e s u l t n o c a v i t a t i o n is e x p e c t e d i n t h a t r e g i o n .

Figs. 2 8 - 3 5 can be used t o select a n o p t i m u m FOD f o r a g i v e n s h i p u s i n g a h a n d c a l c u l a t o r . For e x a m p l e , a s s u m i n g t h a t a s h i p is g i v e n w i t h a d e s i g n speed o f V k n o t s , t h e p r o b l e m o f d e s i g n -i n g a Case 1 FOD (-i.e. select -its o p t -i m u m g e o m e t r y w -i t h t h e

(9)

44 G. Politis, V. Tsarsitalidis /Applied Ocean Research 36 (2012) 36-50

X

Fig. 17. Case 2, Wakes f o r Str=0.29 and theta = 5 (dashed) and 23.54 (sohd).

c o r r e s p o n d i n g r e v o l u t i o n s a n d r e q u i r e d DHP) can be s o l v e d as f o l l o w s : (a) w i t h t h e d e s i g n speed k n o w n , the s h i p resistance and, f r o m Eq. ( 1 9 ) , t h e p r o p e l l e r t h r u s t a n d CT can be c a l c u -l a t e d ; ( b ) w i t h t h i s Cj d r a w a h o r i z o n t a -l -l i n e i n Fig. 28 a n d f i n d t h e i n t e r s e c t i o n o f t h i s h o r i z o n t a l l i n e w i t h the v a r i o u s c o n s t a n t S t r o u h a l lines, let ((^o. Sfr),-, / = 1, ihtr d e n o t e the Hstr i n t e r s e c t i o n p o i n t s ; ( c ) f r o m each S t r o u h a l n u m b e r t h e f r e q u e n c y o f the p r o p u l -sor m o t i o n can be f o u n d : ni = S t r i - V / ( 2 ;io); ( d ) use Fig. 29 t o f i n d Cpi f o r t h e p o i n t s {OQ, S f r ) , , i = 1, list,-, f r o m t h e Cp,,- f i n d t h e r e q u i r e d o p e n w a t e r p o w e r a n d use ( 1 6 ) t o f i n d D H P g , ; ( e ) f r o m t h e c a l c u l a t e d DHPB,,-, / = 1, Ustr select t h a t w i t h m i n i m u m r e q u i r e d D H P B .

2

Fig. 18. Case 2, Wakes for Str = 0.42 and theta = 14.63 (dashed) and 43.53 (solid).

Fig. 19. Case 2, Wakes for S(r= 0.56 and theta = 14.25 (dashed) and 32.75 (solid).

9. G r i d i n d e p e n d e n c e o f the c a l c u l a t e d o p e n w a t e r d i a g r a m s In o r d e r to analyze t h e e f f e c t o f t h e g r i d d e n s i t y t o t h e c a l c u l a t e d o p e n w a t e r FOD p e r f o r m a n c e , t h e s y s t e m a t i c B E M c a l c u l a t i o n s o f t h e p r e v i o u s p a r a g r a p h have been p e r f o r m e d w i t h t h r e e d i f f e r e n t g r i d densities, a c c o r d i n g to Table 1. For t h e c o m p a r i s o n a m o n g g r i d s , a m e a s u r e f o r t h e m a x i m u m a n d m e a n d e v i a t i o n b e t w e e n t h e m e a n t h r u s t forces p r o d u c e d b y each g r i d , has b e e n d e f i n e d as f o l l o w s ; f o r e a c h c a l c u l a t i o n case a n d each g r i d d e n s i t y , a m e a n v a l u e f o r t h r u s t has b e e n f o u n d . Thus, a table w i t h t h r e e c o l u m n s is o b t a i n e d , i n d i c a t i n g the m e a n t h r u s t f o r each o f t h e t h r e e g r i d s , a n d a n u m b e r o f r o w s e q u a l t o the n u m b e r o f c a l c u l a t i o n cases. For each l i n e o f t h e table, t h r e e m o r e

X

(10)

C. Politis, V. Tsarsitalidis / Applied Ocean Research 36 (2012) 36-50 45

Table 1 Grid densities.

Name No. of chordwise No. of circumferential

elements (face + back) elements

G r i d l 20 55

Grid2 26 72

Grids 32 80

c o l u m n s can be a d d e d c o n t a i n i n g the % d i f f e r e n c e s b e t w e e n the m e a n t h r u s t forces o f t h e f i r s t t h r e e c o l u m n s t a k e n i n couples. C o n -s e q u e n t l y , t h r e e m o r e c o l u m n -s o f data are created. For each n e w c o l u m n , the o v e r a l l m e a n and m a x i m u m values are o b t a i n e d (i.e. six m o r e n u m b e r s are o b t a i n e d ) . Those data are s h o w n i n Table 2, w i t h t h e f o l l o w i n g c o n v e n t i o n : above diagonal are o v e r a l l m e a n o f

Z

Fig. 21. Case 3, Wakes for Str=0.29 and theta = 5 (dashed) and 23.54 (solid).

2

Fig. 22. Case 3, Wakes for S f r = 0 . 4 2 and theta = 14.63 (dashed) and 43.53 (solid).

Table 2

Mean (above the diagonal) and m a x i m u m ( b e l o w the diagonal) %deviations in mean thrust calculation.

G r i d l Grid2 Crid3

G r i d l 0 5.1% 5.2%

Grid2 8% 0 0.7%

Grid3 10.1% 3.1% 0

the %differences o f m e a n t h r u s t values a n d b e l o w d i a g o n a l are the m a x i m u m o f t h e %differences o f m e a n t h r u s t values.

It can be seen t h a t G r i d 2 (as w e l l as G r i d S ) can be c o n -s i d e r e d a-s a r e l i a b l e d i -s c r e t i z a t i o n f o r -s y -s t e m a t i c -s i m u l a t i o n -s .

z

Fig. 23. Case 3, Wakes for Str=0.56 and theta = 14,25 (dashed) and 3 2 7 5 (solid).

X

(11)

4 6 C. Politis, V. Tsarsitalidis /Applied Ocean Research 36 (2012) 36-50

Fig. 25. Case 4, Wakes for Str=0.29 and theta = 5 (dashed) and 23.54 (solid).

Fig. 26. Case 4, Wakes f o r Str= 0.42 and l:heta = 14.63 (dashed) and 43.53 (solid).

30 40 t h e t a

Fig. 28. Case 1. Mean thrust coefficient, as f u n c t i o n of Ho. Thick lines stand f o r Str and t h i n lines f o r efficiency.

Nevertheless, G r i d l i n s p i t e o f l a c k i n g accuracy, i t is g o o d e n o u g h to s h o w t r e n d s a n d c o u l d be used f o r g e t t i n g q u i c k e x p l o r a t o r y results.

Fig. 3 6 s h o w s c o m p a r i s o n s o f c a l c u l a t e d t i m e d e p e n d e n t t h r u s t f o r t h r e e d i f f e r e n t g r i d s f o r the case: {Case 1, Str = 0.70, theta = 2 2 . 3 0 } , w h e r e t h e m a x i m u m d i f f e r e n c e o f m e a n values w a s f o u n d . It s h o u l d be n o t e d , t h a t e v e n t h e coarser g r i d , p r o d u c e s results t h a t f o l l o w t h e same t r e n d i n t h e t i m e d o m a i n as w e l l , w h i l e t h e d i f f e r e n c e is l o c a t e d at t h e peak values. I t s h o u l d be also n o t e d t h a t t h e d i f f e r e n c e s i n the c a l c u l a t e d t i m e d e p e n d e n t t h r u s t are r e d u c e d as g r i d d e n s i t y increases, a f a c t w h i c h i n d i c a t e s t h e convergence o f t h e results f o r f i n e r g r i d s .

a.

u

Fig. 27. Case 4, Wakes for Str=0.56 and theta = 14.25 (dashed) and 32.75 (solid).

30 40

theta

Fig. 29. Case 1. Mean p o w e r coefficient, as f u n c t i o n o f Ho. Thick lines stand f o r Str and t h i n forOmax.

(12)

C. Politis, V. Tsarsitalidis/Applied Ocean Research 36(2012) 36-50 47

Table 3

Ship particulars.

Ship no: 1 2 3

Type Bulkcarrier Passenger/car ferry Speedboat Propulsor diameter D ( m ) 8.10 4.10 1 4 0 Displacement (tons) 37,288.9- 8917.66 1 6 0 0 0 Number of propulsors 1 2 2

Table 4

Resistance curves of ships.

Ship 1 2 3 Ship V ( m / s ) R{kp) V ( m / s ) R ( k p ) V ( m / s ) R ( k p ) V-R curve 3.05 9877 7.20 29,055 9.25 9204 3.56 14,191 7.71 31,056 10.27 10,471 4.06 18,496 8.23 34,528 11.32 11,519 4.58 23,029 8.75 38,374 11.83 11,962 5.08 27,463 9.26 42,755 12.35 12,367 5.59 34,212 9 7 8 47,292 12.87 12,697 6.10 40,134 10.29 52,301 13.38 13,084 6.61 48,142 10.80 58,153 13.88 13,477 7.12 61,364 11.31 66,426 14.40 13,872 7.63 75,358 11.83 78,009 14.92 14,306 10. A p p l i c a t i o n of a FOD f o r t h e p r o p u l s i o n o f a s h i p -O p t i m u m d e s i g n e x a m p l e s a n d c o m p a r i s o n w i t h c o n v e n t i o n a l p r o p e l l e r s

Three d i f f e r e n t vessels are u s e d i n a f e a s i b i l i t y s t u d y f o r t h e a p p l i c a d o n o f a FOD as an a l t e r n a t i v e p r o p u l s o r to t r a d i t i o n a l p r o -p e l l e r s . The m a i n c h a r a c t e r i s t i c s o f t h e shi-ps are s h o w n i n Table 3 ( D is t h e selected m e a n FOD d i a m e t e r or t h e p r o p e l l e r d i a m e t e r ) . The s h i p bare h u l l resistance d a t a was t a k e n f r o m the database o f t h e NTUA t o w i n g t a n k a n d are s h o w n i n Table 4. W i t h the b a r e h u l l resistance g i v e n , t h e s y s t e m o f algebraic Eqs. ( 1 7 ) - ( 1 9 ) can be s o l v e d f o r a range o f ship speeds V and a n d t h e t o t a l i t y o f design s o l u t i o n s can be p r e s e n t e d i n a d i a g r a m as d i c t a t e d b y Eq. ( 2 0 ) . For t h e n e e d o f the c o m p a r i s o n , w e have a s s u m e d t h a t i n all cases: w = 0.0, t = 0.0, i]R = 1.0. This is a reasonable a s s u m p t i o n o n l y f o r t h e t w o t w i n s c r e w vessels w h i c h have s m a l l p r o p u l s o r h u l l i n t e r -a c t i o n s . For t h e s i n g l e s c r e w s h i p , t h i s s e l e c t i o n is s o u n d solely f o r c o m p a r a t i v e purposes w i t h t h e c o n v e n t i o n a l p r o p e l l e r . The use o f

t h e t a

Fig. 30. Case 2. Mean t h r u s t coefficient, as f u n c t i o n of do- Thick lines stand for Str

and t h i n lines for efficiency.

t h e same h u l l - i n t e r a c t i o n c o e f f i c i e n t s f o r t h e FOD a n d the p r o p e l l e r can be c o n s i d e r e d reasonable since i n t e r a c t i o n c o e f f i c i e n t s are ( f o r t h e same s t e r n g e o m e t r y ) m a i n l y f u n c t i o n s o f p r o p u l s o r d i a m e -t e r a n d -t h e d e v e l o p e d -t h r u s -t [ 7 ] . No i n c l i n e d axis c o r r e c -t i o n s w e r e m a d e f o r the c o n v e n t i o n a l p r o p e l l e r s . No c o r r e c t i o n o f t h e b a r e h u l l resistance (Table 4 ) f o r appendages has been m a d e . A s h a f t e f f i -c i e n -c y e q u a l to 1 has b e e n u s e d i n t h e -c a l -c u l a t i o n s . N o -c o r r e -c t i o n s f o r f u l l scale Reynolds n u m b e r have b e e n i n t r o d u c e d f o r e i t h e r t h e FOD or the B-series p r o p e l l e r s .

T h e t o t a l i t y o f design s o l u t i o n s D H P N ( o p t i m u m a n d n o n -o p t i m u m ) f -o r the t h r e e vessels e q u i p p e d w i t h a Case 4-FOD can be f o u n d i n Figs. 37, 39 a n d 4 1 , S i m i l a r l y , t h e t o t a l i t y o f design s o l u t i o n s D H P - N ( o p t i m u m a n d n o n - o p t i m u m ) f o r t h e s a m e ships e q u i p p e d w i t h B5.70 c o n v e n t i o n a l p r o p e l l e r s [ 1 3 ] , can be f o u n d i n Figs, 3 8 , 4 0 a n d 4 2 , On t h e figures, the c o n s t a n t - v e l o c i t y curves a n d t h e c o n s t a n t m a x i m u m p i t c h angle QQ curves (Figs. 3 7 , 3 9 a n d 4 1 ) or the c o n s t a n t P/D curves (Figs. 3 8 , 4 0 a n d 4 2 ) are s h o w n a n d l a b e l e d a c c o r d i n g l y .

14

t h e t a

Fig. 31. Case 2. Mean p o w e r coefficient, as f u n c t i o n of Oo. Thick lines stand for Str

(13)

48 C. Politis, V. Tsarsitalidis / Applied Ocean Research 36(2012) 36-50 Table 5

Overall comparison of propulsors.

Ship Speed(kn) Case Revolutions ( r p m ) Power (PS) Overall efficiency {%) Power gain (%) 1 15 FOD (Cr= 0.480) 29.6 9650 79.4 9.81 B-screw 47.0 10,700 71.6 2 23 FOD (Cr= 0.403) 87.5 7550 81.4 3.21 B-screw 145.0 8700 70.7 3 29 FOD (CT=0.401) 305.0 1735 82.0 10.70 B-screw 552.0 1943 73.2 Ttie c o m p a r i s o n s o f t h e o p t i m u m FOD o v e r t h e o p t i m u m B -s c r e w f o r t h e t h r e e -s h i p type-s at c o r r e -s p o n d i n g -selected d e -s i g n speeds can be s u m m a r i z e d i n Table 5. I n atl cases t h e FOD s h o w s e f f i c i e n c i e s o f t h e o r d e r o f 80% a n d the g a i n c o m p a r e d t o t h e B-screw, ranges f r o m 9.81% t o 13.21%. It is also n o t i c e a b l e , t h a t t h e o p t i m u m FOD r e v o l u t i o n s are a l w a y s l o w e r c o m p a r e d t o t h a t o f c o r r e s p o n d i n g c o n v e n t i o n a l o p t i m u m p r o p e l l e r . For i l l u s t r a t i v e

reasons. Fig. 41 i n c l u d e s p r o p u l s i v e e f f i c i e n c y c o n t o u r s s h o w n w i t h dashed lines. I t s h o u l d be s t r e t c h e d t h a t t h e absolute values o f p o w e r a n d o v e r a l l e f f i c i e n c y , c o n t a i n e d i n Table 5, are a p p r o x i m a t e t o t h e e x t e n t o f o u r u n c e r t a i n t y r e g a r d i n g values o f p r o p u l s o r - h u l l i n t e r a c t i o n factors.

30 40 t h e t a

Fig. 32. Case 3. Mean t h r u s t coefficient, as f u n c t i o n of HQ. Thick lines stand for Str

and t h i n lines for efficiency.

30 40 t h e t a

Fig. 34. Case 4. Mean t h r u s t coefficient, as f u n c t i o n o f Ho- Thick lines stand f o r Sfr

and t h i n lines for efficiency.

U

30 40 t h e t a

Fig. 33. Case 3. Mean p o w e r coefficient, as f u n c t i o n o f Ho- Thick lines stand for

Str-and t h i n for a,„ax.

a.

u

30 40 t h e t a

Fig. 35. Case 4. Mean p o w e r coefficient, as f u n c t i o n o f Ho- Thick lines stand f o r Str

(14)

C. Politis, V. Tsarsitalidis/Applied Ocean Research 36 (2012) 36-50 4 9 \ \ • 1 v - ' V n

\ 1

V-

ê

y \ V il r V / 1 GiMÏ i Grid 3 t , : : i . ^ -. . I ^ : : , I L : . I 0 0,5 1 1.5 2

tn-Fig. 36. Effect of grid density to the calculated instantaneous thrust for the case: {Case 1, Str = 0.70, t h e t a = 2 2 . 3 0 } .

N(rpm)

Fig. 37. Bulk carrier (ship 1) - FOD: totality of design solutions i n the f o r m o f constant-V, constant-Öo grid.

11. C l o s i n g r e m a r k s , c h a l l e n g e s a n d f u r t h e r d e v e l o p m e n t

I n s p i r e d f r o m t h e p r o p u l s i o n m e c h a n i s m s used b y s q u i d s a n d j e l l y f i s h e s , a 3 - D BEM t i m e s t e p p i n g a l g o r i t h m has b e e n a p p l i e d t o i n v e s t i g a t e the o p e n w a t e r p e r f o r m a n c e o f a n e w p r o p u l s o r

N(rpm)

Fig. 38. Bulk carrier (ship 1 )-B5.70 screw; t o t a l i t y of design solutions i n the f o r m of constant-V, constant-P/D grid.

N(rpm)

Fig. 39. Passenger ferry (ship 2)-F0D: totality of design solutions in the f o r m of constant-V, c o n s t a n t - ö o grid. concept, t h e F l e x i b l e O s c i l l a t i n g D u c t . Calculations s h o w t h a t t h e FOD is a v e r y e f f i c i e n t p r o p u l s o r . P r o p u l s i v e c o e f f i c i e n t s o f the o r d e r of 0.82 have b e e n c a l c u l a t e d , w h i c h are h i g h e r t h a n t h a t o b s e r v e d i n c o n v e n t i o n a l p r o p e l l e r s . Systematic c a l c u l a t i o n s w e r e m a d e a n d d e s i g n charts w e r e p r o d u c e d , a l o n g w i t h a d e s i g n m e t h o d o l o g y , w h i c h has been e x p l a i n e d t h o r o u g h l y . Due t o lack o f e x p e r i m e n t a l data, e x t e n s i v e n u m e r i c a l tests w e r e c o n d u c t e d w h i c h has i n d i c a t e the g r i d i n d e p e n d e n c e a n d the e x p e c t e d accuracy o f t h e p r o p o s e d m e t h o d . A f t e r a p p l y i n g t h e design m e t h o d f o r a c t u a l ships, t h e FOD proves to be s u p e r i o r t o c o n v e n t i o n a l p r o p e l l e r s w i t h e f f i c i e n c y gains o f t h e o r d e r o f 9 . 8 1 - 1 3 . 2 1 % . F u r t h e r m o r e at t h e r e g i o n o f o p t i m u m FOD e f f i c i e n c i e s no c a v i t a t i o n issues are e x p e c t e d . The FOD, due t o its shape a n d its n o n - r o t a t i o n a l o p e r a t i o n , seems t o be f r i e n d l i e r t o the e n v i r o n m e n t a n d less c a t a s t r o p h i c f o r a q u a t i c a n i m a l s . O n t h e o t h e r h a n d , t h e p r o b l e m o f c o n s t r u c t i n g s u c h a p r o p u l s o r is a n o p e n c h a l l e n g e w h i c h seems d i f f i c u l t w h e n r e s t r i c t e d t o c o n -v e n t i o n a l m a t e r i a l s a n d m e t h o d s . The usage o f n e w t e c h n o l o g i e s and m a t e r i a l s s u c h as t h e e l e c t r o - a c t i v e p o l y m e r s or p i e z o e l e c t r i c ^ I i I • I I I ' I ! r • I I - - I I I 120 140 160 180 200 220 240 260

N(rpm)

Fig. 40. Passenger ferry (ship 2)-B5.70 screw; totality of design solutions i n the f o r m of constant-V, constant-P/D grid. Results for one of the t w o propulsor u n i t s .

Cytaty

Powiązane dokumenty

Teksty : teoria literatury, krytyka, interpretacja nr 4,

Teologia, podobnie jak wiara, zawsze wiązała się z określoną kulturą, i to tak dalece, że m ożna stwierdzić, iż nie m a teologii poza kulturą.' N a tej podstaw ie

witraża dla katedry we Fryburgu w Szwajcarii, 442 x 229 cm Oprócz wymienionych artystów reprezentujących sztukę polską, w wystawie wzięło udział kilku twórców polskich

Celem opracowanej metody było przedstawienie problemów w zakresie bezpie- czeństwa i higieny pracy występujących na budowie dużego centrum handlowego za pomocą klasyfikacji, analizy

The purpose of this study was to develop a new joint angular kinematic method that accounts for the influence of dynamic joint architectural configuration on deformation values using

Wprawdzie aresztowano mnie jako członka ruchu oporu, lecz w Auschwitz nosiłem taką samą żółtą gwiazdę i byłem takim samym Żydem, jak wszyscy inni, którzy nie mieli

Przykładowo na rysunku 6, wartość obciążenia 50 kN odpowiada częstotliwości 1070 Hz; jest to bezpieczny zakres pracy badanej obudowy kotwowej wykonanej z tworzywa

Dit resultaat mag ook 'erwacht worden omdat de interference drag veroorzaakt wordt door loslatingswervels tussen de verschillende onderdelen waaruit de thruster is