• Nie Znaleziono Wyników

Limitations on the creation of continuously surfable waves generated by a pressure source moving in a circular path

N/A
N/A
Protected

Academic year: 2021

Share "Limitations on the creation of continuously surfable waves generated by a pressure source moving in a circular path"

Copied!
14
0
0

Pełen tekst

(1)

Date 2013

Auttior S.A. Schmied, J.R. Binns, M.R. Renilson, G.A. Thomas,

G J . Macfarlane and R.H.M. Huijsmans

Address Delft University of Technology

Ship Hydromechanics and Structures Laboratory

Mekelweg 2, 2628 CD Delft

TUDelft

Delft U n i v e r s i t y of T e c h n o l o g y

Limitations on tlie creation of continuously surfable

w a v e s generated by a pressure source moving in a

circular patti.

by

S.A. S c h m i e d , J . A . Binns, M.R, Renilson, G.A. T h o m a s ,

G.J. I^acfarlane and R.H.M. Huijsmans

Report No. 1 8 7 6 - P 2013

P r o c e e d i n g s o f t h e A S M E 2 0 1 3 3 2 " " I n t e r n a t i o n a l C o n f e r e n c e o n O c e a n , O f f s h o r e a n d A r c t i c E n g i n e e r i n g , O M A E 2 0 1 3 , J u n e 9 - 1 4 , 2 0 1 3 , N a n t e s , F r a n c e , P a p e r 1 0 1 7 4 .

(2)
(3)

Proceedings of tlie ASME 2013 32nd International Conference on Ocean, Offshore and Arctic Engineering

OMAE2013

June 9-14, 2013, Nantes, France

OMAE2013-10174

L I M I T A T I O N S ON T H E C R E A T I O N O F C O N T I N U O U S L Y S U R F A B L E WAVES

G E N E R A T E D B Y A P R E S S U R E S O U R C E M O V I N G I N A C I R C U L A R PATH

M r Steven A . S c h m i e d D r J o n a t h a n R . B i n n s A u s t r a l i a n M a r i t i m e C o l l e g e A u s t r a l i a n M a r i t i m e C o l l e g e L a u n c e s t o n Tasmania A u s t r a l i a L a u n c e s t o n Tasmania A u s t r a l i a P r o f . M a r t i n R . R e n i l s o n A u s t r a l i a n M a r i t i m e C o l l e g e L a u n c e s t o n Tasmania A u s t r a l i a and H i g h e r Colleges o f T e c h n o l o g y , U A E A s s o c . P r o f . G i l e s A . T h o m a s A u s t r a l i a n M a r i t i m e C o l l e g e L a u n c e s t o n Tasmania A u s t r a l i a D r G r e g o r J . M a c f a r l a n e A u s t r a l i a n M a r i t i m e C o l l e g e L a u n c e s t o n T a s m a n i a A u s t r a l i a P r o f . R e n e H u i j s m a n s D e l f t U n i v e r s i t y o f T e c h n o l o g y D e l f t , N e t h e d a n d s A B S T R A C T

I n t h i s paper, a n o v e l idea to produce c o n t i n u o u s b r e a k i n g waves is discussed, w h e r e b y a pressure source is rotated w i t h i n an annular w a v e p o o l . T h e concept was that the pressure source generates n o n - b r e a k i n g waves that propagate i n w a r d t o the inner r i n g o f the annulus, w h e r e a s l o p i n g b a t h y m e t r y (beach) t r i g g e r s w a v e b r e a k i n g . I n order to r e f i n e the technique, research w a s c o n d u c t e d to better understand the m e c h a n i c s o f waves generated b y a pressure source m o v i n g i n a c i r c u l a r t r a c k i n a constrained w a t e r w a y , the t r a n s f o r m a t i o n o f these w a v e s as t h e y t r a v e l across the channel and the e f f e c t o f the s l o p i n g beach o n the w a v e q u a l i t y f o r s u r f i n g .

T h e q u a l i t y o f the w a v e s w a s d e f i n e d i n t e r m s o f w a v e height, speed and shape, w i t h the desired a i m t o create p l u n g i n g waves, k n o w n as "barrels", that are h i g h l y desired b y surfers. S u r f e r s also r e q u i r e a l o n g steep crestline or " w a l l " , t o a l l o w a f u l l range o f m a n o e u v r e s to be p e r f o r m e d . F i n a l l y , the p o o l needed t o be able t o create waves suitable f o r surfers f r o m beginner to e x p e r t l e v e l , d e f i n e d i n terms o f b o t h the w a v e h e i g h t and angle b e t w e e n the w a v e break p o i n t angle and the beach, k n o w n a peel angle.

T h e p r i m a r y n o v e l o u t c o m e o f the research c o n d u c t e d was t o be able t o design a pressure source that m o s t e f f i c i e n t l y i m p a r t e d w a v e m a k i n g energy i n t o the water, and thus

generated the largest possible w a v e s w h i l s t t r a v e l l i n g at the r e q u i r e d speed f o r s u r f i n g .

T h e m a j o r finding was that the design parameters are g e n e r a l l y i n c o m p e t i f i o n , and to determine a balance o f l i m i t i n g values, the design parameters cannot be considered i n i s o l a t i o n . T h e r e f o r e , a set o f e m p i r i c a l r e l a t i o n s h i p s b e t w e e n the d e s i g n parameters w e r e d e v e l o p e d t o a l l o w t h e p o o l to be designed f o r a c o m b i n a t i o n o f desired w a v e h e i g h t at the b r e a k p o i n t , w a v e shape and g i v e n p o o l radius.

T h e l i m i t i n g values f o r the parameters w e r e d e t e r m i n e d e x p e r i m e n t a l l y , w i t h the w a v e l i f e - c y c l e fi-om g e n e r a t i o n thi-ough t r a n s f o r m a t i o n to w a v e b r e a k i n g and d i s s i p a t i o n used t o f o c u s the i n v e s t i g a t i o n . Scale m o d e l e x p e r i m e n t s w e r e c o n d u c t e d i n b o t h linear and c i r c u l a r tracks. I n a d d i t i o n t o t a k i n g q u a n t i t a t i v e measurement o f w a v e h e i g h t a n d c u r r e n t f o r m a t i o n , a m e t h o d o f q u a l i t a t i v e l y s c o r i n g the w a v e s w a s d e v e l o p e d t o a l l o w v a r i o u s pressure source shapes, o p e r a t i n g c o n d i t i o n s a n d b a t h y m e t r i e s t o be c o m p a r e d i n t e r m s o f t h e i r s u i t a b i l i t y f o r s u r f i n g . T h e best q u a l i t y w a v e s were p r o d u c e d b y a wedge-shaped w a v e d o z e r pressure source, such as the d e v i c e detailed i n D r i s c o l l and R e n i l s o n [ 1 ] .

B l o c k a g e , d e f i n e d as the pressure source cross s e c t i o n a l area t o c h a n n e l cross-sectional area, was f o u n d to have a s i g n i f i c a n t l i m i t a t i o n o n t h e generation o f h i g h q u a l i t y w a v e s suitable f o r

(4)

s u r f i n g i n a c o n s t r a i n e d w a t e r w a y . L a t e r a l w a v e decay, l e n g t h and depth F r o u d e N u m b e r s also s t r o n g l y i n f i u e n c e d the waves d u r i n g t h e i r l i f e - c y c l e . F u n d a m e n t a l l y , i t was d e t e r m i n e d that o n l y a v e r y s m a l l range o f design parameter values p r o d u c e the desired h i g h and shapely waves i n the e x t r e m e l y c o n s t r a i n e d w a t e r w a y undei' c o n s i d e r a t i o n . N O M E N C L A T U R E ji K B l o c k a g e V V o l u m e d i s p l a c e m e n t 1^ W a v e b r e a k i n g i n t e n s i t y S u r f a c e e l e v a t i o n

(,,,pi S u r f a c e e l e v a t i o n measured close t o the pressure source

CO A n g u l a r v e l o c i t y

head, W a v e l e n g t h i n deep water j u s t b e f o r e the beach Ac C h a n n e l cross-sectional area

As Pressure source cross sectional area B Pressure source b e a m

B* N o r m a l i s e d pressure source beam — no

Cp W a v e p h a s e s p e e d d D r a u g h t

d* N o r m a l i s e d pressure source draught — «O

Fri, D e p t h F r o u d e n u m b e r Fri,„ D e p t h F r o u d e n u m b e r at Rg ho Water d e p t h at Ro

Hbeadi W a v e h e i g h t at the start o f the beach hheach W a t e r d e p t h at the start o f the beach

H* N o n - d i m e n s i o n a l i s e d w a v e h e i g h t 3 ^ v v LWL Pressure source w a t e r l i n e l e n g t h R R a d i u s Ro P o o l radius Ro B e a c h r a d i u s s B e a c h slope T w a v e p e r i o d li T a n g e n t i a l c o m p o n e n t o f the v e l o c i t y ( p a r a l l e l w i t h the pressure source l i n e o f t r a v e l )

ito Pressure source v e l o c i t y y L a t e r a l distance f r o m Ro

) ' * N o r m a l i s e d lateral distance f r o m 7?o — "0 ybead, L a t e r a l distance to the start o f the beach

ytead* N o r m a l i s e d lateral distance to the start o f the beach ybeac h

Ro Ybead, W i d t h o f the beach

WP W a v e p r o b e Zbead, H e i g h t o f the beach

INTRODUCTION

S u r f i n g is f u n . H o w e v e r , i t is also e x t r e m e l y d i f f i c u l t to l e a r n and master T h i s d i f f i c u l t y is n o part helped b y ever c h a n g i n g nature and short d u r a t i o n o f the b r e a k i n g waves; w i t h the w a v e s c h a n g i n g b o t h day to day w i t h the weather, and as the w a v e breaks on the shore. W i t h the average w a v e b r e a k i n g f o r less than 7 seconds, the s u r f e r can o n l y r i d e the waves f o r less t h a n 8% o f the t i m e i n the w a t e r [ 2 ] . T h e r e f o r e , the d r e a m o f e v e r y s u r f e r is f o r consistent, l o n g l a s t i n g , h i g h q u a l i t y waves. T h i s search concentrates s u r f e r s o n to those areas o f coastline that are exposed t o r e g u l a r surf, a n d w i t h a b a t h y m e t r y suitable t o cause the w a v e to break i n a consistent manner and p r o v i d e a l o n g ride.

M a n y surfers do n o t h a v e the l u x u r y o f l i v i n g near s u r f breaks, and must t r a v e l l o n g distances i n o r d e r to s u r f Further, as coastal p o p u l a t i o n s increase, and s u r f i n g becomes m o r e popular, e x i s t i n g s u r f breaks b e c o m e o v e r c r o w d e d , s h o r t e n i n g their o v e r a l l r i d i n g t i m e even f u r t h e r . Surfers have responded b y t r a v e l i n g t o m o r e distant a n d r e m o t e l o c a t i o n s t o chase u n c r o w d e d and better waves [ 2 ] , even t h o u g h t h i s increases the cost o f s u r f i n g and does n o t reduce c r o w d i n g at t h e i r h o m e breaks. A n o t h e r s o l u t i o n has b e e n t o b u i l d a r t i f i c i a l reefs i n the ocean, h o w e v e r these s t i l l r e l y o n the natural w a v e c o n d i t i o n s . I n t h i s u n c o n t r o l l e d e n v i r o n m e n t , the w a v e s are a f f e c t e d b y the c o n s t a n d y c h a n g i n g and p o t e n t i a l adverse a f f e c t s o f the weather, i n c l u d i n g w a v e d i r e c t i o n and p e r i o d , w i n d ( d i r e c t i o n and strength), t i d e , a n d currents. A t h i r d s o l u t i o n is t o generate waves i n a c o n t r o l l e d e n v i r o n m e n t : the w a v e p o o l .

W a v e p o o l s are not a n e w concept. I n 1934, t h e W e m b l e y S w i m m i n g P o o l i n L o n d o n was the first t o t h r i l l its v i s i t o r s w i t h s m a l l a r t i f i c i a l w a v e s . I n 1966, the first i n d o o r surfers r o d e w a i s t - h i g h w a v e s i n the S u m m e r l a n d w a v e p o o l i n T o k y o , Japan [ 4 ] . Since then, m o r e s u r f p o o l s have been b u i l t a r o u n d the w o r l d , r e c e i v i n g m i x e d r e v i e w s f r o m surfers. T h e o r i g i n a l linear w a v e p o o l s , w h e r e the w a v e s are generated at one end and t r a v e l t o a beach at the other end, t r y t o m i m i c n a t u r a l l y o c c u r r i n g waves w i t h p i s t o n - d r i v e n paddles or s i m i l a r m e c h a n i c a l devices. Such m a n - m a d e waves are not v e r y appealing to surfers as the r i d e s are short, a n d the w a v e s generally w e a k and p o o r l y shaped.

Some m a n u f a c t u r e r s b e n d the p o o l a r o u n d a c u r v e to concentrate the s w e l l , or shape the p o o l floor t o i m p r o v e the w a v e height [ 5 ] . A n o t h e r m e t h o d used to s i m u l a t e s u r f i n g waves is t o shoot a t h i n sheet o f w a t e r o v e r a w a v e shaped surface. H o w e v e r , t h i s m e t h o d does n o t p r o v i d e an authentic s u r f i n g experience (a m o v i n g w a v e b r e a k i n g a l o n g a s h o r e l i n e ) and, l i k e the linear p o o l s , g e n e r a l l y o n l y a l l o w s o n e r i d e r at a t i m e [ 6 ] . A t h i r d concept aims t o d r a w an o b j e c t t h o u g h s h a l l o w w a t e r a l o n g a linear t r a c k c r e a t i n g w a v e s i n fi-ont o f the o b j e c t [ 7 ] .

(5)

A s the e x i s t i n g techniques generate the w a v e s b y m o v i n g large v o l u m e s o f water, they are p o w e r i n t e n s i v e . Instead, the n o v e l m e t h o d discussed i n this r e p o r t m o r e e f f i c i e n t l y generates the waves b y the pressure source i m p a r t i n g w a v e energy i n t o w a t e r w i t h m i n i m a l water m o v e m e n t .

K e y d e f i c i e n c i e s w i t h these approaches i n v o l v e b o t h the l a c k o f an authentic, scalable s u r f i n g w a v e m o t i o n o f a m o v i n g w a v e b r e a k i n g o n a shoreline, t h e large p o w e r r e q u i r e m e n t s t o generate the waves and a l i m i t a t i o n o f a s i n g l e r i d e r b e i n g able to s u r f at one t i m e , l i m i t i n g the financial v i a b i l i t y o f the p o o l .

W E B B E R WAVE POOL CONCEPT

I n o r d e r t o find the s o l u t i o n t o these p r o b l e m s w i t h current w a v e p o o l t e c h n o l o g y , a n o v e l idea t o p r o d u c e c o n t i n u o u s s u r f a b l e b r e a k i n g w a v e s has been patented [ 8 ] b y L i q u i d T i m e Pty L t d , the Webber Wave P o o l , w h e r e b y one o r m o r e pressure sources are rotated w i t h i n an annular w a v e p o o l ; F i g u r e 1 and F i g u r e 2 . T h e pressure source is any o b j e c t that disrupts the w a t e r surface, such as a s h i p - l i k e h u l l o r submerged body.

T h e inner r i n g o f the annulus has a s l o p i n g b a t h y m e t r y (i.e. a beach) to induce b r e a k i n g o f the w a v e s ( o r i g i n a t i n g at the pressure sources), w i t h the b r e a k p o i n t f o l l o w i n g t h e c i r c u l a r path a r o u n d the c e n t r a l i s l a n d at a g i v e n w a t e r depth at the b r e a k p o i n t (lueach) p r o p o r t i o n a l t o the w a v e h e i g h t (//imc/;); n o t i n g that f o r this analysis, the b r e a k p o i n t was d e f i n e d t o be at the start o f the beach. T h e q u a l i t y o f the w a v e s generated b y the pressure sources is c r i t i c a l f o r s u r f i n g , w i t h the w a v e s o n l y b r e a k i n g w h e n t r i g g e r e d b y the s l o p i n g b a t h y m e t r y o f the beach.

T h e design consists o f m u l t i p l e pressure sources t r a v e l l i n g a r o u n d the outer c i r c u m f e r e n c e o f the p o o l w h i l s t c o n t i n u a l l y p u s h i n g w a k e waves t o w a r d s the centre i s l a n d w h e r e they are f o r c e d t o break o n the m a n - m a d e beach due t o the change i n w a t e r depth. S h o u l d the pressure sources be s y m m e t r i c a l about t h e i r centre, a l l o w s the p r o d u c t i o n w a v e s i n b o t h the c l o c k w i s e a n d a n t i - c l o c k w i s e d i r e c t i o n s . R o t a t i n g the pressure sources c l o c k w i s e w i l l f o r m l e f t - h a n d e d w a v e s a n d a n t i - c l o c k w i s e w i l l p r o d u c e r i g h t - h a n d e d waves. A n artist's i m p r e s s i o n o f the c o n c e p t and c o m m e r c i a l a p p l i c a t i o n s are s h o w n i n F i g u r e I and F i g u r e 2 respectively.

I t is i n t e n d e d that b y p r o v i d i n g a safe l e a r n i n g e n v i r o n m e n t w i t h repeatable w a v e c o n d i t i o n s a n d l o n g ( u n l i m i t e d ) r i d e lengths, the o v e r a l l s u r f i n g a b i l i t y o f the p a r t i c i p a n t s can q u i c k l y i m p r o v e . Hull f Beach F i g u r e 1. C o n c e p t d e s i g n f o r the e f f i c i e n t m e t h o d o f g e n e r a t i n g c o n t i n u o u s l y s u r f a b l e b r e a k i n g waves u s i n g m o v i n g pressure sources. ( R e p r o d u c e d w i t h p e r m i s s i o n o f L i q u i d T i m e P t y ) . F i g u r e 2. A r i s t ' s i m p r e s s i o n o f the w a v e p o o l f o r a w a t e r p a r k ( R e p r o d u c e d w i t h p e r m i s s i o n o f L i q u i d T i m e P t y L t d ) .

FULL S C A L E VALIDATION

T h e c o n c e p t w a s p r o v e n , at least f o r a linear t r a c k , u s i n g a f i s h i n g vessel g e n e r a t i n g waves i n a r i v e r esmary, w h e r e the vessel t r a v e l l e d i n a straight l i n e close t o the b a n k . F i g u r e 3 shows that one o f the s m a l l e r waves generated b y a m o v i n g pressure source w a v e s can consistently s u r f e d .

(6)

F i g u r e 3. R i v e r t e s t i n g such as that s h o w n i n t h i s f i g u r e has p r o v e n that even t h e smallest o f pressure source generated waves can be consistently s u r f e d . ( R e p r o d u c e d w i t h p e r m i s s i o n o f L i q u i d T i m e P t y L t d ) .

APPROACHES

T h e m a i n a i m i n d e s i g n i n g a w a v e p o o l is t o p r o d u c e h i g h q u a l i t y s u r f a b l e w a v e s w i t h the longest d u r a t i o n possible. T h e m a i n constraint o n the d e s i g n is t o p r o d u c e the w a v e s i n the smallest space possible w i t h a m i n i m u m a m o u n t o f energy. T o determine the d e s i g n parameter values to generate the desired waves, three approaches w e r e used: E m p i r i c a l , n u m e r i c a l a n d e x p e r i m e n t a l .

A s the e m p i r i c a l analysis has s i m p l i f i c a t i o n s and assumptions, e x p e r i m e n t a l a p p r o a c h c o n d u c t e d b o t h l i n e a r and c i r c u l a r scale m o d e l t e s t i n g , w i t h the l i m i t i n g values f o r the d e s i g n parameters established f r o m the e x p e r i m e n t a l results.

EiVlPIRICAL APPROACH

T h e f i r s t m e t h o d w a s an e m p i r i c a l analysis to d e t e r m i n e a series o f e m p i r i c a l r e l a t i o n s h i p s b e t w e e n the design parameters. T h e e m p i r i c a l analysis c o m b i n e d e x i s t i n g r e l a t i o n s h i p d e f i n i n g the e f f e c t o f the pressure source shape and o p e r a t i n g c o n d i t i o n s , and b a t h y m e t r y o n the w a v e l i f e c y c l e ; f r o m w a v e g e n e r a t i o n , t h r o u g h t r a n s f o r m a t i o n to b r e a k i n g a n d d i s s i p a t i o n ; F i g u r e 4.

T o a l l o w the p o o l to be designed f o r a c o m b i n a t i o n o f Hi,^ach< w a v e shape and p o o l radius {RQ,) the e m p i r i c a l analysis d e t e r m i n e d the r e l a t i o n s h i p s b e t w e e n the design parameters w a s d e v e l o p e d . T h e p o o l b a t h y m e t r y parameters, r e f e r r e d t o i n t h i s paper, as s h o w n i n F i g u r e 5. I n c o n d u c t i n g the e m p i r i c a l analysis, the w a v e s w i l l be assumed to break a\yteach w i t h w a v e h e i g h t of Hteach.

Geuer.ition Trai\.4onii.nlioii Brc.ikiHg Dissi|i.ition

F i g u r e 4. W a v e l i f e - c y c l e i l l u s t r a t e d i n the c i r c u l a r scale m o d e l at Fri,o = 0.975 w i t h B* = 2 7 5 m m , c/* = 0.2 and ho = 2 5 0 m m .

The m o d e l is t r a v e l l i n g t o w a r d s the camera.

Water depth

Beach width ( V j ^ r t )

V^tóter depth at the start of the beach

Start of the Beach

^ ^ ^ . ^ ^ Slope (s) 1 _ Beach height (Zj,^,) Beach radius (R^^J Pool radius (RJ F i g u r e 5. B a t h y m e t r y parameters

SURFING WAVES

To c o m m e n c e t h e e m p i r i c a l analysis; the f i r s t e l e m e n t o f the w o r k w a s t o d e f i n e the r e q u i r e m e n t s o f the w a v e p o o l f r o m the end-user perspective, b e i n g the s u r f e r K e y parameters w e r e w a v e speed, b r e a k i n g w a v e shape and w a v e h e i g h t at the b r e a k p o i n t

(HteacI,)-WAVE S P E E D FOR SURFING

T h e i n i t i a l d e s i g n parameter t o be d e t e r m i n e d w a s the w a v e speed (Cp), f o r s u r f i n g , b y c o n s i d e r i n g t w o q u e s t i o n s :

a. W h a t is the design range o f Cp f o r a s u r f i n g w a v e ?

b. W h a t is the m i n i m u m Cp f o r a w a v e t o be s u r f a b l e ?

T o determine Cp range f o r s u r f i n g , an i n i t i a l a n a l y s i s was c o n d u c t e d b y a meta-analysis o f e x i s t i n g s u r f i n g w a v e studies f o r m e a n Cp f o r d i f f e r e n t s u r f breaks a r o u n d the w o r l d b y D a l l y [ 5 5 ] and H u t t et. a l . [ 3 8 ] . T h e average Cp o f all o b s e r v a t i o n s w a s 6 m/s, w i t h t h i s v a l u e used as the i n i t i a l d e s i g n w a v e speed f o r the w a v e p o o l .

F i e l d observations o f s u r f i n g w a v e s w e r e c o n d u c t e d at L o r n e P o i n t , V i c t o r i a [ 3 ] . L o r n e p o i n t w a s chosen as the w a v e s break p a r a l l e l w i t h the s h o r e l i n e , a n d w i t h a desirable shape at s m a l l (less t h a n I m ) w a v e h e i g h t s . T h u s , L o r n e P o i n t is c o n s i d e r e d a close representation o f w a v e s desired f o r the final w a v e p o o l .

T o d e t e r m i n e the m i n i m u m Cp that s t i l l p r o d u c e s s u r f a b l e w a v e s , the field o b s e i v a t i o n s w e r e u n d e r t a k e n a n d a n a l y s e d at

(7)

L o m e P o i n t . T l i e smallest s u r f a b l e waves observed h a v i n g

hheach = 0 . 5 m w i t h a w a v e p e r i o d ( 7 ) = 3s, the m i n i m u m Cp w a s

estimated as b e i n g 3m/s u s i n g s h a l l o w w a t e r estimate f r o m A n t h o n i [ 4 ] . T h i s o b s e r v a t i o n w a s s u p p o r t e d b y D a l l y [ 5 ] and H u t t et al. [ 6 ] , w h o observed a m i n i m u m Cp = 2m/s.

T o translate the linear a p p r o x i m a t i o n t o the case o f a pressure source t r a v e l l i n g i n a c i r c u l a r t r a c k , i t was observed that the w a v e s t r a v e l l e d w i t h the pressure source; that is the w a v e field w a s obsei-ved to have the same angular v e l o c i t y ( t y ) as the pressure source. F o r the w a v e field t o have the same m as the pressure source at a l l r a d i i , the t a n g e n t i a l c o m p o n e n t o f the v e l o c i t y ( p a r a l l e l w i t h the pressure source l i n e o f t r a v e l ) {u) m u s t be p r o p o r t i o n a l to the radius (i?).

WAVE HEIGHT

W h e n t a l k i n g about surf, the first question that surfers ask is " h o w b i g are the w a v e s ? " H o w e v e r the answer to t h i s q u e s t i o n is n o t straight f o r w a r d , as surfers s t i l l cannot agree o n h o w t o measure w a v e height, w h e r e i t is the w a v e face ( o n w h i c h the s u r f e r r i d e s ) [ 7 ] , the w a v e h e i g h t i n deep w a t e r b e f o r e the w a v e breaks (that is measured u s i n g s w e l l b o u y s a n d r e p o r t e d o n w e a t h e r reports), or some other measure.

I n c o n d u c t i n g the e m p i r i c a l analysis, the waves w i l l be assumed t o break at yteach w i t h w a v e h e i g h t o f Ht^ach F o r a t h r i l l i n g desirable r i d e , the w a v e m u s t be large e n o u g h f o r the average s u r f e r A s an i n i t i a l d e s i g n r e q u i r e m e n t , Hteach = > 2 m is desirable as i t is overhead f o r the average h e i g h t s u r f e r (assumed as 1.75m), p r o v i d i n g an e x c i t i n g r i d i n g e x p e r i e n c e ; F i g u r e 6. O f course, smaller waves are also v e r y e n j o y a b l e t o r i d e , especially f o r less s k i l l e d surfers. T h e r e f o r e , s m a l l e r diameter, cheaper w a v e p o o l s that generate w a v e s o f Hheach < 2 m m a y also be v i a b l e .

WAVE SHAPE

T h e shape o f the w a v e at the b r e a k p o i n t is a c r i t i c a l element o f the s u i t a b i l i t y o f the w a v e f o r s u r f i n g . G a l v i n [ 8 ] and B a t t j e s [9] f o u n d the w a v e w i l l break i n d i f f e r e n t breaker shapes dependent o n the beach slope {s), Hheach and the w a v e l e n g t h i n deep w a t e r j u s t b e f o r e the beach (Xhead), w h e r e the w a v e crests p a r a l l e l w i t h the beach slope. B a t t j e s [ 9 ] used the I r i b a r r e n n u m b e r ( f ) ( o r s u r f s i m i l a r i t y parameter) t o describe the b r e a k e r t y p e o n the basis o f p r e v i o u s results o f G a l v i n [ 8 ] :

^ ^ t a n ( 5 ) ( 1 )

'J^lbeac h /^beac h

B a t t j e s [ 9 ] f o u n d the range o f values f o r f f o r the d i f f e r e n t w a v e breaker types, as detailed i n T a b l e 1.

B r e a k e r type

S p i l l i n g f < 0 . 4 P l u n g i n g 0 . 4 < = ^ < = 2 . 0 S u r g i n g / c o l l a p s i n g ^ > 2 . 0

T a b l e 1 . B r e a k e r type and ^ ( f r o m [ 9 ] )

T h e types o f breaker shapes w e r e d e f i n e d b y G a l v i n [ 8 ] as:

a. S p i l l i n g breakers. These waves are surfable, h o w e v e r they are n o t the highest quality.

b. P l u n g i n g breakers. These waves are the h i g h e s t q u a l i t y waves.

c. C o l l a p s i n g breakers. These waves are not s u r f a b l e .

d. S u r g i n g breakers. These waves are not s u r f a b l e .

For surfers, the u l t i m a t e experience is to r i d e i n s i d e a p l u n g i n g " b a r r e l i n g " w a v e ; F i g u r e 6. Surfers r o u t i n e l y t r a v e l a l l o v e r the w o r l d to r i d e " b a r r e l s " p l u n g i n g waves as not a l l s u r f i n g breaks generate p l u n g i n g w a v e s , and due to the d i s t r i b u t i o n of Hteach i n a w a v e g r o u p ( k n o w n i n s u r f i n g as a "set" o f w a v e s ) not e v e r y w a v e plunges. T h e r e f o r e , to constantly generate p l u n g i n g waves is the u l t i m a t e a i m o f the w a v e p o o l .

F i g u r e 6. S u r f e r r i d i n g p l u n g i n g w a v e o f Hheach ~ 2 m .

WAVE WIDTH

T h e l e n g t h o f s m o o t h , u n b r o k e n w a v e crest is d e f i n e d as the usable " w a l l " w i d t h . A s d e f i n e d b y H a r t l e y [ 1 0 ] , a w i d e steep w a l l is r e q u i r e d t o p r o v i d e surfers s u f f i c i e n t v e r t i c a l a n d lateral space to p e r f o r m t y p i c a l manoeuvres. A n e x a m p l e o f such a h i g h q u a l i t y w a v e is s h o w n i n F i g u r e 7.

M e a d et. al. [ 1 1 ] f u r t h e r associates the d i f f e r e n t parts o f the b r e a k i n g w a v e w i t h the d i f f e r e n t manoeuvres . T h e ' p o c k e t ' is j u s t i n f r o n t o f the b a r r e l and is w h e r e the m a j o r i t y o f the waves p o w e r is located. I t f o r m s the steepest part o f the w a v e a n d thus is the section w h e r e s u r f e r s are able to generate the m o s t speed. T h e ' s h o u l d e r ' is w h e r e t h e w a v e is the least steep a n d generally surfers w i l l s t r u g g l e to generate speed w h i l s t s u r f i n g on this section. A d v a n c e d surfers w i l l o f t e n use a c u t b a c k m a n o e u v r e t o p o s i t i o n themselves b a c k i n the p o c k e t . T h e ' l i p ' is the u p p e r m o s t p o i n t o f the w a v e and can b e used f o r p o w e r f u l t o p - t u r n s o r aerials. T h e ' w h i t e w a t e r ' i s the b r o k e n part o f the w a v e i n w h i c h is g e n e r a l l y a v o i d e d b y s u r f e r s o f a

(8)

reasonable s k i l l l e v e l . W h i t e w a t e r m a y be s u r f e d by beginners w h i l e they are l e a r n i n g t o stand u p .

T h e w a l l w i d t h is n o m i n a l l y the distance b e t w e e n the outer w a l l and the break p o i n t , m i n u s the pressure source beam. F u r t h e r , a b o w w a s h ( b r e a k i n g b o w w a v e ) is created as the pressure source t r a v e l , causing a n area o f t u r b u l e n t water; t e r m e d the n e a r - f i e l d r e g i o n ; F i g u r e 8. T h i s near field r e g i o n is u n s u i t a b l e f o r s u r f i n g a n d reduces the usable w a l l w i d t h .

F i g u r e 7. A h i g h q u a l i t y w a v e shape. T h e elements o f the w a v e

as described b y M e a d et. al. [11] are s h o w n .

F i g u r e 8. E x a m p l e o f near field e f f e c t s f o r m o d e l 6.

NUMERICAL APPROACH

O n c e the set o f e m p i r i c a l relationships b e t w e e n the design parameters w e r e d e v e l o p e d t o a l l o w the p o o l to be designed f o r a c o m b i n a t i o n o f desired Hteaci,, ^ and RQ, a n u m e r i c a l a p p r o a c h w a s u n d e r t a k e n u s i n g the Michlet linear p o t e n t i a l flow m o d e l [ 1 2 ] . Michlet had the advantage o f b e i n g able t o e f f i c i e n t l y m o d e l a large n u m b e r o f test c o n d i t i o n s . A n e f f i c i e n t m o d e l i n g m e t h o d w a s r e q u i r e d t o c o n d u c t an i n i t i a l analysis o f the waves generated b y the pressure sources g i v e n the f r e e d o m t o c o n t r o l m a n y o f the design parameters, i n c l u d i n g pressure source c o n f i g u r a t i o n (shape, l e n g t h , beam, draught, a n d v o l u m e d i s p l a c e m e n t ) , w a t e r depth, and pressure source speed.

A s d e t a i l e d i n M i c h e l l [ 1 3 ] , the waves are created b y a pressure source w h e r e there is a change i n the b e a m i n the s t r e a m w i s e d i r e c t i o n ; the c o m p o n e n t o f a pressure source w h e r e the w a t e r l i n e is p a r a l l e l ( f l a t sided) does not c o n t r i b u t e t o w a v e m a k i n g [ 1 4 ] . T h e r e f o r e , the i n i t i a l f o c u s w a s o n d e t e r m i n i n g a pressure source design that has c o n t i n u a l l y c h a n g i n g beam w o u l d e f f i c i e n t l y generate waves. E x a m p l e s o f t h i s d e s i g n w e r e the h y p e r b o l i c tangent w a t e r l i n e pressure sources, w i t h

w a t e r l i n e l e n g t h {LWL) t o b e a m {B) r a t i o o f 1.3 and 1.75, used i n i n h i a l i n v e s t i g a t i o n b y S c h i p p e r [ 1 5 ] and V r i e s [ 1 6 ] .

To p r o v i d e e x p e r i m e n t a l data t o v a l i d a t e the a b i l i t y t o accurately p r e d i c t the w a v e h e i g h t s u s i n g Michlet, linear t o w tank t e s t i n g w a s c o n d u c t e d u s i n g three d i f f e r e n t pressure source m o d e l s and c o m b i n a t i o n s o f speed, water d e p t h and d r a u g h t . H o w e v e r the Michlet m o d e l was n o t able to accurately p r e d i c t the w a v e shape generated b y the w i d e ( n o n - t h i n ) pressure sources. These e a r l y results w e r e p u b l i s h e d b y the authors [ 1 7 ] [ 1 8 ] , w i t h the w o r k presented at a conferences [ 1 9 ] [ 2 0 ] a n d other venues.

A f l i r t h e r n u m e r i c a l a p p r o a c h consider the e f f e c t o f the w a v e d o z e r b e a m and e n t r y angle o n the generated w a v e h e i g h t was c o n d u c t e d b y Essen [ 2 1 ] u s i n g the RAPID n o n - l i n e a r p o t e n t i a l flow m o d e l . F i n a l l y , a thi-ee d i m e n s i o n a l F i n i t e V o l u m e M e t h o d ( F V M ) n u m e r i c a l approach t o m o d e l the entire w a v e p o o l system w i t h a beach i n place to a l l o w the b r e a k i n g w a v e shape to be p r e d i c t e d is c u r r e n t l y b e i n g u n d e r t a k e n b y Javanmardi [ 2 2 ] using ANSYS-CFX/ FLUENT, t h a t solves the R A N S equations w i t h finite-volume a p p r o a c h a n d uses the v o l u m e o f fiuid t e c h n i q u e t o s i m u l a t e the fi-ee-surface m o t i o n .

T h e authors changed the f o c u s t o the e x p e r i m e n t a l a p p r o a c h , g i v e n the l i m i t a t i o n s o f the p o t e n t i a l fiow n u m e r i c a l approaches and w i t h the m o r e c o m p l e x F V M approach b e i n g u n d e r t a k e n b y J a v a n m a r d i [ 2 2 ] .

EXPERIMENTAL APPROACH

T h e t h i r d approach w a s d e v o t e d t o a series o f f o u r e x p e r i m e n t a l scale m o d e l e x p e r i m e n t s . T h e f o c u s o f the e x p e r i m e n t a l approach was first to deal w i t h the pressure source shape and the o p e r a t i n g c o n d i t i o n s t o m a x i m i s e the size and q u a l i t y o f the generated w a v e s . Subsequently, the e f f e c t s o f t h e b a t h y m e t r y o n the w a v e t r a n s f o r m a t i o n b r e a k i n g and d i s s i p a t i o n w e r e e x a m i n e d .

T h e results w e r e also used to d e t e r m i n e o f the d e s i g n parameter l i m i t i n g values f o r i n p u t to the e m p i r i c a l analysis, and t o v a l i d a t e the a u t h o r ' s M i c h l e t p r e d i c t i o n s , Essen's RAPID predicrions, and J a v a n m a r d i ' s F V M m o d e l [ 2 2 ] .

L i n e a r and c i r c u l a r scale m o d e l s w e r e b u i l t a n d tested at the A u s t r a l i a n M a r i t i m e C o l l e g e ( A M C ) . T h e l i n e a r t e s t i n g w a s conducted i n the 1 0 0 m t o w t a n k , w i t h the c i r c u l a r scale m o d e l b u i l t i n the M o d e l Test B a s i n ( M T B ) ; F i g u r e 9. Cameras and w a v e probes w e r e used t o r e c o r d and e x a m the shape a n d d e v e l o p m e n t o f the w a v e s .

(9)

F i g u r e 9. Circular scale model

PRESSURE SOURCES

Most studies into ship wave generation have focused on miminising the wave generation [23] [24] [25], thus reducing the ship wave resistance [26] [27], nuisance to other users o f the waterway [28] and destructive wave-shore interaction [29]. Previous work by Macfarlane [26] and others has found that wave making increased with the beam to length ratio; that is a short, wide pressure source; Figure 10. A more efficient pressure source shape, being a wavedozer, was investigated by Standing [30], and further developed by D r i s c o l l [1] and Renilson [31]. T h e wavedozer is also a very simple structure to form, essentially simply being an inclined flat plate. T h e initial wavedozer design is shown in Figure 11. T h e wavedozers used differed from those previously tested by Standing [30], D r i s c o l l and R e n i l s o n [1] [31], that spanned the channel, where the wavedozer tested by the author had limited beam.

T h e pressure sources tested for different shapes and values o f beam, draught, UVL and entry angle ( « ) (for the wavedozers) as detailed in Table 2. T h e pressure sources were configured so they were fixed in heave and trim.

F i g u r e 10. M o d e l 2 parabolic pressure source o f 7 0 0 m m length, 6 0 0 m m beam, 500mm height.

F i g u r e 11. T h e first wavedozer shape M o d e l 3 tested. T h e direction o f travel was from left to right.

S e r i a l M o d e l T y p e . B e a m [mm] A [deg] L i n e a r 1 Parabolic 300 N / A 2 Parabolic 600 N / A 3 Wavedozer 300 14 C i r c u l a r S e r i e s 1 4 Wavedozer 176 14 5 Wavedozer 251 14 6 Wavedozer 176 14 7 Wavedozer 251 14 C i r c u l a r S e r i e s 2 8 Wavedozer 75 4 - 18 9 Wavedozer 175 14 10 Wavedozer 275 14 11 Wavedozer 150 14 C i r c u l a r S e r i e s 3 12 Wavedozer 275 7 13 Wavedozer 550 7

T a b l e 2. Pressure sources tested in each series

QUALITATIVE ASSESSIMENT

T h e next question surfers ask each other when c h e c k i n g the surfer is "how good is it". That is, for surfing, wave quality is as important, i f not more important, than the w a v e height

(Hbeac!,)- T h i s qucstion is again subjective, however, the w a v e

quality can be broken down into a number o f elements.

In addition to the wave shape ( Ö , the w a v e quality is also determined by wall width, w a v e steepness and smoothness o f the wave face. T h e s e qualities determine the type o f manoeuvres that a surfer may do on the wave.

(10)

T o support the q u a l i t a t i v e assessment o f the w a v e q u a l i t y , the w a v e s c o r i n g system d e v e l o p e d b y the A s s o c i a t i o n o f S u r f i n g Professions [ 3 2 ] w a s used. T a b l e 3, w i t h t w o examples o f excellent w a v e s s h o w n i n F i g u r e 12. T h e j u d g i n g c r i t e r i a w e r e c l a r i f i e d t o a l l o w f o r the steady state nature o f the w a v e s generated i n the p o o l . S c o r e D e s c r i p t i o n R e q u i r e m e n t s 0 N o w a v e tJnrideable 0 . 0 - 1.9 B a r e l y s u r f a b l e N o turns. S p i l l i n g w a v e . 2 . 0 - 3 . 9 F a i r S i m p l e turns. S p i l l i n g w a v e . 4.0 - 5.9 A v e r a g e T u r n s , s m o o t h w a v e . S p i l l i n g w a v e . 6.0 - 7.9 G o o d P l u n g i n g w a v e w i t h s m o o t h , steep w a l l 8 . 0 - 1 0 . 0 E x c e l l e n t P l u n g i n g w a v e w i t h l o n g , s m o o t h , steep w a l l T a b l e 3. W a v e scores F i g u r e 12. E x a m p l e s o f e x c e l l e n t w a v e s generated i n the c i r c u l a r scale m o d e l b y m o d e l 10 w i t h d* = 0.2 i n ho = 2 5 0 m m at Fri,o = 0.975.

EXPERIMENTAL RESULTS

et. al. t h e o r e t i c a l c r i t i c a l i t y b o u n d a r y ; F i g u r e 14. C o n d i t i o n s

w e r e d e t e r m i n e d to be i n the Critical Zone w h e n the n o n -d i m e n s i o n w a v e height (H*) as a f u n c t i o n o f n o n - -d i m e n s i o n a l lateral distance (y*) w a s less t h a n c o n d i t i o n 6 2 K = 0; an e x a m p l e is s h o w n i n F i g u r e 15 f o r c o n d i t i o n 56 K= 0.07.

T h e r e f o r e , t o m a x i m i s e the w a v e h e i g h t at the b r e a k p o i n t {Hbeaci), the p r e f e r e n c e w o u l d be f o r b l o c k a g e to b e m i n i m i s e d ; i.e. «: = 0. H o w e v e r , a beach is r e q u i r e d t o t r i g g e r the w a v e to b r e a k w i t h the desired p l u n g i n g shape. F r o m F i g u r e 14, the presence o f t h e beach m a y a l l o w c o n d i t i o n s s l i g h t l y w i t h i n the

Critical Zone to be used, l i m i t e d t o K <= 0.07 and Frm < 1.

I t m u s t be n o t e d that b y R o b b i n s el. al. [ 3 3 ] a n d the present w o r k d i f f e r :

a. P r e s s u r e sources. R o b b i n s et. al. used a catamaran w h i l s t the present w o r k used w a v e d o z e r s .

b. B a t h y m e t r y . R o b b i n s et. al. used a rectangular channel w i t h a constant water d e p t h . T h e present w o r k used s l o p i n g beaches.

F o r a l l c o n d i t i o n s , a bow wave was generated i n f r o n t o f the pressure source, i n c l u d i n g f o r K ~ 0 % ; F i g u r e 16. T h e bow wave is b e l i e v e d t o be due t o a c o m b i n a t i o n o f the t w o p h e n o m e n a ; a p r i m a r y w a v e and / or a s o l i t o n . T h e f o r m a t i o n o f the bow M'ave resuhed i n less energy b e i n g a v a i l a b l e f o r the d i v e r g e n t w a v e s , and t h e r e f o r e the reduced m a x i m u m Cwpi o f the t r a i l i n g d i v e r g e n t w a v e s , as i n d i c a t e d b y the r e d u c t i o n i n d i v e r g e n t w a v e e l e v a t i o n f o r c o n d i t i o n 56 w i t h i n c r e a s i n g s o l i t o n f o r m a t i o n ; F i g u r e 16.

F r o m the e x p e r i m e n t a l results, a k e y parameter that related the w a v e l i f e - c y c l e t o the pressure shape, o p e r a t i n g c o n d i t i o n s and b a t h y m e t r y w a s t h e b l o c k a g e ( K ) is d e f i n e d as the pressure source cross s e c t i o n a l area (A,) to channel cross-sectional area (Ac):

R o b b i n s et al. [ 3 3 ] i n v e s t i g a t e d the e f f e c t o f K. o n the f o r m a t i o n o f a s o l i t o n i n a c o n s t r a i n e d c h a n n e l . R o b b i n s d e v e l o p e d a p l o t o f K as a f u n c t i o n o f Frj,; F i g u r e 13. T h i s was d i v i d e d i n t o : a. Sub-Critical Zone, w i t h no / l i m i t e d s o l i t o n f o r m a t i o n and a d i v e r g e n t w a v e field. b . Critical Zone w i t h s i g n i f i c a n t s o l i t o n f o r m a t i o n . c. Super-Critical Zone \ v i t h no / l i m i t e d s o l i t o n f o r m a t i o n and s u p e r - c r i t i c a l w a v e field. T h e b o w w a v e / s o l i t o n w a s g e n e r a l l y n o t steep e n o u g h to break, and t h e r e f o r e w o u l d n o t be used f o r s u r f i n g i n t h i s w a v e p o o l design. T h e r e f o r e , the f o r m a t i o n o f the bow wave is a m a j o r l i m i t a t i o n o n the g e n e r a t i o n o f s u r f a b l e d i v e r g e n t w a v e s , and was sought to be m i n i m i s e d .

T h e m a i n o u t c o m e o f the e m p i r i c a l a p p r o a c h w a s that the d e s i g n parameters are i n c o m p e t i t i o n . T h e r e f o r e , t h e values o f the d e s i g n parameters are c a r e f u l l y b a l a n c e d t o achieve the desired b r e a k i n g w a v e shape and h e i g h t , K a n d associated s o l i t o n f o r m a t i o n are f o u n d t o have the greatest l i m i t a t i o n o n the g e n e r a t i o n o f h i g h q u a l i t y w a v e s suitable f o r s u r f i n g i n a c o n s t r a i n e d w a t e r w a y . H o w e v e r , a w i d e , s h a l l o w e n t r y a n g l e w a v e d o z e r was f o u n d t o generate s m o o t h h i g h w a v e s , w h i c h w e r e able t o be t r i g g e r e d t o break w i t h a p l u n g i n g shape.

R o b b i n s et. ai. [ 3 3 ] obsei-ved that s o l i t o n f o r m i n g Critical Z o n e extended w i t h increased K. R o b b i n s et. al. [ 3 3 ] o n l y tested at

K < 0.02. T h e authors o f t h i s paper extended R o b b i n s ' results t o K <= 0.07 b y p l o t t i n g the c i r c u l a r scale m o d e l series 3 results

(11)

jub-CtrlltllIarM F i g u r e 13. K as a f u n c t i o n o f Fr/, f r o m R o b b i n s et. al. [ 3 3 ] . 1.00 0.95 0.90 A 0.85 0.80 A 0.75 0.70 A 0.65

\ Critical zone

« * « • « 4» • • • A ^ •

Sub-critical zone

Robbins criticality

boundary

0.02 0.04 0.06 0.08 K

F i g u r e 14. Sub-Critical ( o p e n t r i a n g l e s ) and Critical ( s o l i d

d i a m o n d s ) c o n f i g u r a t i o n s p l o t t e d against R o b b i n s et. al. t h e o r e t i c a l c r i t i c a l i t y b o u n d a r y ( a d o p t e d f r o m R o b b i n s et. al. [ 3 3 ] ) . I I

\ \ ^ ^

• Cond 62 k = 0 ACond 55 k = 0.07 V bcath A D F i g u r e 15. / / * as a f u n c t i o n o f f o r d i f f e r e n t values o f K f o r m o d e l 12-02 w i t h d* = 0.2 i n iio = 2 5 0 m m at Fri,o = 0.95; c o n d i t i o n 62 K = 0 and c o n d i t i o n 56 ;c = 0.07. T h e beach is i n place atytcach* = 0.15 f o r c o n d i t i o n 56. CO 20

1

0 - 4 0 •GO Reduced Bow w a v e / S o i i t o n

-Cond 62 Model 12-02 k=0 No beach •Cond 56 Model 12-02 k = 0.07

20 22 24 26

Time [s]

28 30

F i g u r e 16. T i m e traces o f Qpi f o r m o d e l 12 f o r K = 0 and

5= 1 6 ° w i t h K = 0.07 at Fr^ = 0.95 w i t h d* = 0.2 i n

lio = 2 5 0 m m . M o d e l 11-12 was t i m e s h i f t e d t o a l i g n w i t h m o d e l

12-02. T h e pressure source b o w passed the w a v e p r o b e at t i m e = 24.5 seconds.

(12)

POOL RADIUS

(Ro)

CONCLUDING REMARKS

F i n a l l y , i n order to generate the m a x i m u m n u m b e r o f s u r f a b l e

waves, the c o m m e r c i a l w a v e p o o l requires m u l t i p l e pressure sources, w i t h o u t adverse w a v e i n t e r a c t i o n ; that is, the w a t e r surface needed t o c a l m s u f f i c i e n t l y a f t e r the passing o f one pressure source, p r i o r to the second pressure source t r a v e l l i n g t h r o u g h the same w a t e r so as n o t t o a f f e c t the w a v e q u a l i t y o f the waves generated b y second and subsequent pressure sources.

To determine the t i m e r e q u i r e d t o a l l o w the w a t e r s u r f to c a l m , by o b s e r v a t i o n , non-adverse residual waves i n t e r a c t i o n w a s d e f i n e d b e i n g w h e n surface e l e v a t i o n , measured close t o the pressure source (Cuyj/), e x c i t e d b y the pressure source w a s less than 1 0 % o f the m a x i m u m ^ „ ^ / o f the first w a v e generated. A s an e x a m p l e , C,,,^, o f the first w a v e was 5 6 m m at t i m e = 30s; F i g u r e 17. T h e r e f o r e , the w a t e r is d e f i n e d as b e i n g c a l m e n o u g h f o r the second pressure source to pass w h e n ^„.^,/ < 5 . 6 m m ; w h i c h occurs b y t i m e = 38s. W i t h the second pressure source passing at t i m e = 50s, the pressure sources s h o u l d be able to be placed closer together.

T h e design o f a c i r c u l a r w a v e p o o l concept has been p r o d u c e d by W e b b e r W a v e Pools and patented w i t h i n A u s t r a l i a and I n t e r n a t i o n a l l y . T h i s d e s i g n shows great p r o m i s e s to not o n l y p r o d u c e a unique f a c i l i t y f o r e x p a n d i n g the s u r f i n g i n d u s t r y b u t also to conduct s i g n i f i c a n t research i n t o repeatable b r e a k i n g w a v e s .

A k e y finding was that the pressure source shape, o p e r a t i n g c o n d i t i o n s and b a t h y m e t r i c design parameters w e r e i n c o m p e t i t i o n . T h e r e f o r e i n order to generate h i g h , p l u n g i n g w a v e s i n the constrained channel, these d e s i g n parameters c o u l d not be considered i n i s o l a t i o n . I t w a s f o u n d that the w a v e q u a l i t y was e x t r e m e l y sensitive to changes i n the design parameters.

Subsequently, a set o f e m p i r i c a l r e l a t i o n s h i p s b e t w e e n the d e s i g n parameters w e r e d e t e r m i n e d t o a l l o w a p o o l to be designed f o r a c o m b i n a t i o n o f the desired height o f the largest w a v e s at the break p o i n t , a p l u n g i n g w a v e shape i n a g i v e n p o o l radius.

T h e r e f o r e , a l o n g w i t h pressure source speed (iio), Ro w i l l determine the l e n g t h o f t i m e f o r each pressure source t o t r a v e l around the p o o l , and t h e r e f o r e the n u m b e r o f pressure sources that m a y be used i n a s i n g l e p o o l . 60 40 20

E ,

1

1 +/-10% j

\m

INI W M V \ n ; y ^ ' w « ^ ' ' ' ^

-r

20 3 0 4 0 5 0 6 0 T i m e [s] F i g u r e 17. T i m e trace o f C,pj f o r C o n d i t i o n 6 m o d e l 5 w i t h (7* = 0.2 i n ho = 2 5 0 m m at Fri,o = 0 . 9 5 .

T h i s w o r k c o n t i n u e d the research c o n d u c t e d b y R o b b i n s et. al. [ 3 3 ] . A s detailed i n R o b b i n s et. al. [ 3 3 ] , s o l i t o n f o i m a t i o n is t i m e dependent and s p e c i f i c to b l o c k a g e . R o b b i n s et. al. [ 3 3 ] a d v i s i n g that the w i d e r ( i . e . fiiU scale) i m p l i c a t i o n s o f these m o d e l test findings are p o t e n t i a l l y s i g n i f i c a n t , w i t h a l l p r e v i o u s w a v e measurements f o r critical values o f Fr/,, w i l l be t i m e dependant ( i . e . unsteady), e s p e c i a l l y i n h i g h b l o c k a g e e n v i r o n m e n t s such as r i v e r s o r canals. H o w e v e r , f a c i l i t i e s l i m i t a t i o n s ( i . e . l i m i t e d l e n g t h t o w t a n k s and test basins), m a y not a l l o w s u f f i c i e n t t i m e f o r the s o l i t o n t o f u l l y f o r m or reach a steady state w i t h a beach i n p o s i t i o n . T h e r e f o r e , t h e c i r c u l a r t r a c k scale m o d e l m a y p r o v i d e the f a c i l i t y to address t h i s l i m i t a t i o n .

H o w e v e r , s u f f i c i e n t results w e r e o b t a i n e d b y the end the p r o g r a m to a l l o w pressure source a n d b a t h y m e t r y to be c o n f i g u r e d to produce t w o h i g h q u a l i t y p l u n g i n g waves per pressure source. T h e present w o r k dealt w i t h d e t e r m i n i n g a c o n f i g u r a t i o n that was s u f f i c i e n t t o c o m m e r i c a l i s e the patented d e s i g n , and t h r o u g h the c o m b i n a t i o n o f the e m p i r i c a l analysis, t h i s was a c h i e v e d . T h e p r o m i s e o f m a k i n g the p e r f e c t repeatable-surfable w a v e seems t o be c o m i n g true.

Further work

Based o n the w o r k presented i n t h i s paper, a n u m b e r o f r e c o m m e n d a t i o n s and suggestions f o r f l i t u r e w o r k can be made.

Pool design steps

T o design a f u l l size p o o l , i t is r e c o m m e n d e d t o use the e m p i r i c a l r e l a t i o n s h i p s a n d d e s i g n parameter v a l u e s chosen f r o m the e x p e r i m e n t a l results.

(13)

T h e p r e d i c t e d design and the shape o f the w a v e s h o u l d then be c o n f i r m e d u s i n g the ANSYS-CFX/ FLUENT rmmnYK&i m o d e l d e v e l o p e d b y Javanmardi [ 2 2 ] . T h e m o d e l a l l o w s the i n v e s t i g a t i o n o f the w a v e shape, currents and forces o n t h e pressure source thi'oughout the w a t e r v o l u m e , and i n f a r greater d e t a i l , than c o u l d be achieved e x p e r i m e n t a l l y . T h e m o d e l a l l o w s the v i s u a l i s a t i o n o f the three d i m e n s i o n a l b r e a k i n g w a v e shape, f a c i l i t a t i n g a q u a l i t a t i v e assessment o f the w a v e q u a l i t y f o r s u r f i n g . T h i s v a l u a b l e data is n o t necessarily accessible b y the e x p e r i m e n t a l m e t h o d due t o the d i f f i c u l t y o f m e a s u r i n g the b r e a k i n g w a v e shape, especially once f u l l scale p o o l s are considered. T h e m o d e l has been v a l i d a t e d against the c u r r e n t c i r c u l a r t r a c k scale m o d e l test results.

Experimental approach

T h e n e x t c i r c u l a r t r a c k scale m o d e l s h o u l d be used to validate the i n i t i a l design p r e d i c t e d u s i n g the e m p i r i c a l relationships.

T h i s w o r k c o n t i n u e d the research c o n d u c t e d b y R o b b i n s et. al. [ 3 3 ] . A s detailed i n R o b b i n s et. al. [ 3 3 ] , s o l i t o n f o r m a t i o n is time dependent and s p e c i f i c t o b l o c k a g e . R o b b i n s et. al. [ 3 3 ] a d v i s i n g that the w i d e r (i.e. f u l l scale) i m p l i c a t i o n s o f these m o d e l test findings are p o t e n t i a l l y s i g n i f i c a n t , w i t h a l l p r e v i o u s w a v e measurements f o r critical values o f Fri„ w i l l be t i m e dependant ( i . e . unsteady), e s p e c i a l l y i n h i g h b l o c k a g e e n v i r o n m e n t s such as r i v e r s o r canals. H o w e v e r , f a c i l i t y l i m i t a t i o n s (i.e. l i m i t e d l e n g t h t o w tanks and test basins), m a y not a l l o w s u f f i c i e n t t i m e f o r the s o l i t o n t o fijlly f o r m or reach a steady state w i t h a beach i n p o s i t i o n . T h e r e f o r e , the c i r c u l a r t r a c k scale m o d e l m a y p r o v i d e the f a c i l i t y t o address t h i s l i m i t a t i o n .

T h e results o f this research m a y be also a p p l i e d t o other a p p l i c a t i o n s such as ship waves generated d u r i n g m a n o e u v r i n g ( c u r v e d tracks) and operations i n restricted w a t e r w a y s . S c i e n t i f i c a l l y , the research p r o v i d e s a m e t h o d to s i g n i f i c a n t l y e x t e n d the fxindamental k n o w l e d g e o f w a v e mechanics.

ACKNOWLEDGIVIENTS

T h e authors w o u l d l i k e to a c k n o w l e d g e the support o f our i n d u s t r y partner Webber Wave P o o l s . W e w o u l d also l i k e t o a c k n o w l e d g e the s u p p o r t o f the A u s t r a l i a n M a r i t i m e C o l l e g e t e c h n i c a l t e a m .

T h e authors w o u l d l i k e to a c k n o w l e d g e the support o f the A u s t r a l i a n Research C o u n c i l t h r o u g h t h e i r a w a r d o f our L i n k a g e P r o j e c t grant L P 0 9 9 0 3 0 7 .

R E F E R E N C E S

1. D r i s c o l l , A . and M . R . R e n i l s o n , The Wavedozer A

System of Generating Stationary Waves in a Circulating Water Channel A M T E ( H ) T M 8 0 0 1 3 ,

1980(Jul 1980).

2. W e i g h t , D . Economics of surf reefs, i n 3rd

International Surfing Reef Symposium. 2 0 0 3 . R a g l a n ,

N e w Z e a l a n d .

3. S c h m i e d , S., et al., A novel method for generating

continuously surfable M'aves. M a r i n e T e c h n o l o g y

S o c i e t y J o u r n a l , 2 0 1 0 . 4 4 ( 2 ) : p . 7-12.

4. A n t h o n i , F. Oceanography: waves theory and

principles of wa\'es, how they work and what causes them. 2 0 0 0 30 D e c e m b e r 2 0 0 9 ] ; A v a i l a b l e f r o m : h t t p : / / w w w . s e a f r i e n d s . o r g . n z / o c e a n o / w a v e s . h t m .

5. D a l l y , W . R . , The maximum speed of surfers. Journal o f Coastal Research., 2 0 0 1 (Special issue 2 9 N a t u r a l ) : p . 3 3 - 4 0 .

6. H u t t , J.A., K . A . B l a c k , and S.T. M e a d , Classification

Of Surf Breaks In Relation To Surfing Skill Journal o f

Coastal Research., 2 0 0 1 (Special Issue N u m b e r 2 9 . ) : p . 6 6 - 8 1 .

7. B a s c o m , W . , Waves and Beaches. 1964, G a r d e n C i t y , N e w Y o r k : A n c h o r B o o k s , D o u b l e d a y a n d C o m p a n y I n c .

8. G a l v i n , C.J.J., Breaker Type Classification on Three

Laboratoiy Beaches. J. G e o p h . Res., 1 9 6 8 ( 7 3 ) : p . p .

3 6 5 1 - 3 6 5 9 .

9. B a t t j e s , J.A. Surf Similarity, i n Proc 14th International

Conference on Coastal Engineering. 1974.

10. H a r t l e y , A . , Quantifying wave face quality for surf

craft riding, i n National Centre for Marititue Engineering and Hydrodynamics. 2 0 1 2 , U n i v e r s i t y o f

Tasmania A u s t r a l i a n M a r i t i m e C o l l e g e .

11. M e a d , S.T. and K . P . B l a c k , Field studies leading to the

batiiymetric classification of world-class surfing breaks. N a t u r a l and A l i f i c i a l Reefs f o r S u r f i n g and

Coastal P r o t e c t i o n . Journal o f Coastal Research, 2 0 0 1 (Special Issue N o . 2 9 ) : p . p p . 5-20.

12. T u c k , E . G . , L . Lazauskas, and D . C . S c u l l e n , Sea Wave

Pattern Evaluation, Part I Report: Primary Code And Test Results (Surface Vessels). 1999, A p p l i e d

M a t h e m a t i c s D e p a r t m e n t , the U n i v e r s i t y o f A d e l a i d e , p . 10.

13. M i c h e l l , J . H . , Tlie wave resistance of a ship, i n

Philosophical Magazine. 1898. p . p p . 1 0 6 - 1 2 3 .

14. Lazauskas, L . , Resistance, Making and

Wave-Decay of Thin Ships, with Empliasis on tiie Effects of Viscosity, i n Applied Matiiematics Department. 2 0 0 9 ,

T h e U n i v e r s i t y o f A d e l a i d e .

15. Schipper, M . A . D . , On the generation of surfable ship

M'aves in a circular pool: Part I Physical background & Wave pool design, i n Faculty of Civil Engineering and Geosciences. 2 0 0 7 , D e l f t U n i v e r s i t y o f

T e c h n o l o g y .

16. V r i e s , S.D., On the Generation of Surfable Sitip Waves

in a Circular Pool, part II, i n Faculty of Civil Engineering and Geosciences. 2 0 0 7 , D e l f t U n i v e r s i t y

o f T e c h n o l o g y .

17. S c h m i e d , S.A., et a l , A Novel Meliiodfor Generating

(14)

Society J o u r n a l , 2 0 1 0 . V o l u m e 44, N u m b e r 33 2 ( M a r c h / A p r i l 2 0 1 0 ) : p . 7 - 1 2 .

18. S c h m i e d , S.A. and M . M e i r , Suvfin' In Circles,, i n

Engine. 2 0 0 7 .

19. S c h m i e d , S.A., et a l . , A Novel Method for Generating

Continuously Surfable Waves, i n Offshore, Marhiine and Artie Engineering. 2 0 1 1 : R o t t e r d a m , the

N e t h e r l a n d s .

20. B i n n s , J., et a l . Novel Method For Generating

Continuously Surfable Waves, i n Pacific 2012. 2 0 1 2 :

Sydney, A u s t r a l i a .

2 1 . Essen, S.v., Wave Pool Project; RAPID Non-linear

Potential FIOM> Wave Height Predictions. 2 0 1 1 ,

T e c h n i c a l U n i v e r s i t y ( T U ) D e l f t and A u s t r a l i a n M a r i t i m e C o l l e g e .

2 2 . J a v a r a m a d i , M . , et a l . . The formation of surfable

M'cives in a circular M'ave pool - comparison of numerical and experimental approaches, i n 31st International Conference on Ocean Offshore and Arctic Engineering 2 0 1 2 : R i o de Janeiro, B r a z i l .

23. T u c k , E . O . , D . C . S c u l l e n , a n d L . Lazauskas, Wave

Patterns and Minimum Wave Resistance for High-Speed Vessels, i n 24th Symposium on Naval Hydrodynamics. 2 0 0 2 : F u k u o k a , J A P A N .

24. S o d i n g , H . , Far-Field Ship Waves. S h i p T e c h n o l o g y Research, 2 0 0 6 . 53: p . p p . 138-147.

25. K o u s h a n , K . , Automatic Hull Form Optimisation

Towards Lower Resistance And Wash Using Artificial Intelligence, i n FAST2003 Conference. 2 0 0 3 : I s c h i a

I t a l y .

26. M a c f a r l a n e , G.J. and M . R . R e n i l s o n , Wave Wake - A

Rational Method For Assessment, i n International Conference on Coastal Ships and Inland Waterways.

1999, R o y a l I n s t i t u t i o n o f N a v a l A i x h i t e c t s ( R I N A ) : L o n d o n , p . 14.

27. M a c f a r l a n e , G.J. and M . R . R e n i l s o n , When is low

wash low wash—an investigation using a wave wake database, i n International Conference on Hydrodynamics for High Speed Craft—Wake Wash and Motions Control. 2 0 0 0 , R o y a l I n s t i t u t i o n o f N a v a l

Ai-chitects ( R I N A ) : L o n d o n , p . 14.

28. M a c f a r l a n e , G . , Marine Vessel Wave Wake: Focus on

Vessel Operations within Sheltered Watenvays, i n Australian Maritime College 2 0 1 2 , U n i v e r s i t y o f

Tasmania.

29. V e r h e i j , H.P. a n d M . P . B o g a e r t s , Ship Waves and the

Stability of Armour Layers Protecting Slopes. 1989.

30. S t a n d i n g , R . G . , Proving Trials of the Wavedozer, a

Travelling Beam l-Vavemaker. 1976, N a t i o n a l P h y s i c a l

L a b o r a t o i y , S h i p D i v i s i o n . 3 1 . R e n i l s o n , M . R . , Wavedozer. 1 9 8 1 , U n i v e r s i t y o f G l a s g o w : G l a s g o w . 32. A s s o c i a t i o n _ o f _ S u r f i n g _ P r o f e s s i o n s . Judging Criteria. 12 A p r 2 0 1 2 ] ; A v a i l a b l e from: w w w . a s p w o r l d t o u r . c o m / p r e s s - r o o m / i u d g i n g - c r i t e r i a /.

R o b b i n s , A . , et a l , Subcritical Wave Wake

Unsteadiness. I n t e r n a t i o n a l J o u r n a l o f M a r i t i m e

Cytaty

Powiązane dokumenty

Pisma Maurycego Mochnackiego Pamiętnik Literacki : czasopismo kwartalne poświęcone historii i krytyce literatury polskiej 9/1/4,

[r]

Während der Zeit Tr wird der Seegang r(t) und während der Zeit T werden die Schiffsbewegungen x(t) (x kann irgend eine Translation oder einen Winkel oder eine Ableitung davon

Family Therapy: An Overview [in Polish], Cracow: Wydawnictwo Uniwersytetu Jagiellońskiego... Wertfülle und

Co więcej, produktem życia twórczego może być także ono samo, a wówczas sposobem na jego realizację staje się autokreacja.. Zmienność cechująca twórczy

With ellipse cellular design, negative Poisson’s ratio was achieved during the compression and the overall energy absorption efficiency and deformability was

Type 2 active site shows the lowest activation barrier for the initial oxidative degradation but also the fastest reaction toward the carbamic acid, providing protection

uwadze, 6 grudnia 1937 roku erygował przy die- cezjalnym Instytucie Akacji Katolickiej w Płocku Instytut Wyższej Kultury religijnej (IWKr) jako ko- ścielną jednostkę prawną