• Nie Znaleziono Wyników

Wykorzystanie analizy dyskryminacyjnej do porównania ekstraktów torfowych

N/A
N/A
Protected

Academic year: 2021

Share "Wykorzystanie analizy dyskryminacyjnej do porównania ekstraktów torfowych"

Copied!
7
0
0

Pełen tekst

(1)

ROMUALDA BEJGER1, DOROTA GOŁĘBIOWSKA1, PAWEŁ NICIĄ2

WYKORZYSTANIE ANALIZY DYSKRYMINACYJNEJ

DO PORÓWNANIA EKSTRAKTÓW TORFOWYCH

USING THE DISCRIMINANT ANALYSIS

TO COMPARE PEAT EXTRACTS

'instytut Inżynierii Rolniczej, Katedra Fizyki i Agrofizyki, Zachodniopomorski Uniwersytet Technologiczny w Szczecinie, :Katedra Gleboznawstwa i Ochrony Gleb, Uniwersytet Rolniczy w Krakowie

A b s tr a c t: Aim o f this study is distinction o f tw o peat types on the basis o f valu es o f their

physicochem ical parameters and values o f their alkaline extract optical parameters by use o f a discriminant analysis. In peat sam ples were determinated physicochem ical parameters: water content, pH in H^O and KC1, electrolytic conductivity; ash content, decom position degree (D D ) and organic carbon content. It was noted that ash content and decom position degree were the physicochem ical parameters best differentiating studied peat sam ples. The analysis o f discri­ minant function showed as w ell, that among optical parameters the best „classifiers” are:

Q l S W O O ’ A A / A A 2 a n d e 2 8 0> £ 4 0 0

-S ło w a kluczow e: ekstrakty' torfow e, analiza dyskrym inacyjna. K ey w ords: peat extracts, discriminant analysis.

WSTĘP

W badaniach materii organicznej pochodzącej z różnych ekosystemów, w tym także z torfowisk, wykorzystuje się różne metody fizykochemiczne, m.in. optyczne metody spektroskopowe, które pozwalają na ilościową i jakościową charakterystykę materii organicznej i jej najważniejszej części - substancji humusowych (SH). Metody te mogą być wykorzystywane do oceny subtelnych zmian, jakie zachodzą w strukturze SH pod wpływem środowiska, a rezultaty' pomiarów mogą stanowić kryterium pozwalające na klasyfikację związków humusowych ze względu na miejsce ich pochodzenia.

Celem pracy było sprawdzenie przy użyciu funkcji dyskryminacyjnej, czy parametry optyczne wyliczone z widm absorpcji w zakresie UV-VIS alkalicznych ekstraktów pochodzących z dwóch gatunków torfu, należących do odmiennych typów, różnicują te torfy podobnie jak ich parametry fizykochemiczne.

(2)

MATERIAŁ I METODY

Badaniom poddano próbki torfu niskiego (turzycowego) i wysokiego (sfagnowego) pobrane z warstw podpow-ierzchniowych z torfowisk Błoto Kraków i Olszanka, położonych na terenie kompleksu torfowiskowego w Dolinie Dolnej Odry. W próbkach torfowych oznaczono: zawartość wody - metodą suszarkowo-wagową, stopień rozkładu (SRT) - uproszczoną metodą makroskopową wg Polskiej Normy PrPN-G-04595 oraz metodą przemywania („szlamowania”) Kudriaszowa [Maksimów 1965; Gawlik 1992], pH w H0O i w 1 mol-drn"'1 KC1 -metodąpotencjometryczną. przewodnictwo właściwe (x ) - metodąkónduktometryczną, popielność - metodą prażenia w piecu muflowym, zawartość w;ęgla organicznego (C ) - spektrofotometiyczną metodą Orłowa i Grindel [Orlow i in. 1969]. ,,Świeże'’ próbki tSrfu poddawano ekstrakcji roztworem 0,1 mol-dm"3 NaOH zgodnie z procedurą Schnitzera [Schnitzer, Khan 1978]. Zawartość węgla w SH oznaczono również spektrofotometryczną metodą Orłowa i Grindel [Orłów i in. 1969].

Do charakterystyki alkalicznych ekstraktów torfowych zastosowano spektralną analizę absorpcyjną w zakresie UV-VIS. Widma absorpcji rejestrowano za pomocą skompute­ ryzowanego spektrofotometru Specord M-42 firmy Zeiss-Jena z oprogramowaniem START. Absorbancję roztworów-' SH rejestrowano przy stałym stężeniu węgla wyno­ szącym 0,01 mg-crrf3 w kuwetach o grubości: 1 cm (zakres UV) i 3 cm (zakres VIS). Na podstawie widm absorpcji wyznaczono szereg względnych parametrów optycznych, takich jak: współczynniki Q [Chen i in. 1977], AAj/AA, [Gołębiowska i in. 1991], Alog K [Kumada 1987]. Wyznaczono ponadto współczynniki absorbancji właściwej e , przy odpowiednich długościach fal od 260 do 665 nm, ( e = A /C • d) dla C = 1 % i grubości warstwy d = 1 cm [Chen i in. 1977; Kumada 1987].* ^

Klasyfikację typów torfu na podstawie wartości ich parametrów fizykochemicznych oraz wartości względnych parametrów optycznych alkalicznych ekstraktów' pochodzących z tych torfów, przeprowadzono przy użyciu analizy funkcji dyskryminacyjnej na poziomie istotności p<0,05, stosując program Statistica PL wrersja 7,0. Program ten wykorzystano również do wykrycia różnic pomiędzy poszczególnymi średnimi odnoszącymi się do próbek torfu należących do określonego typu. Zastosowano test Newmana-Keulsa przy poziomie istotności p<0,05.

WYNIKI I DYSKUSJA

W tabeli 1 przedstawiono podstawowe parametry' fizykochemiczne badanych próbek torfu niskiego (turzycowego) z torfowiska Błoto Kraków i wysokiego (sfagnowego) z torfowiska Olszanka. Próbki torfu niskiego charakteryzują się wyższymi wartościami: stopnia rozkładu, pH, przewodnictwa właściwego oraz popielności w porównaniu z próbkami torfu wysokiego. Uzyskane rezultaty potwierdzają powszechnie znane już dane literaturowe [Zawadzki 1999; Tobolski 2000; Myślińska 2001: Szajdak 2002; Brandyk, Szatyłowicz 2002]

Wszystkie uzyskane dane fizykochemiczne próbek torfow ych pokazują, że parametrami najbardziej różnicującymi torfy niskie i wysokie są: popielność i stopień rozkładu torfu.

Monotoniczny charakter widm absorpcji badanych roztworów SH w zakresie UV-VIS utrudnia identyfikację ich struktury chemicznej. Dlatego do charakterystyki tych związków, pochodzących z różnych ekosystemów', wykorzystuje się względne parametry absorpcyjne, które są czułym wskaźnikiem zmian, jakie zachodzą w strukturze SH pod w'plywem różnych czynników środowiskowych.

(3)

TABELA 1. Parametr}’ fizykochemiczne badanych próbek torfu niskiego i wysokiego TABLE 1. Physicochemical parameters o f low-moor and high-moor peat samples Próbki torfu

Peat samples

Parametr}' fizykochemiczne próbek torfowych Physicochemical parameters o f peat samples Za wart, wodv Water content SRT - DD [%] pH X Popielność Ash content Core. [%] \ * B* H: ° KC1 [li S-cnr3] [% d.m.] [g -kg’ 1] Torf niski Low-moor peat 8 6,2±2,9 h2 it 23,1± 1,4 5.7 5.1 206,2± 39.6 8,8±0,8 4 5 ,9 x 3 .2 Torf wysoki High-moor peat 88,2±2,5 H , I 7 ,9± L 2 3,7 2,7 100.1 = 12.9 1,5=0,4 45,1±4.5

*A - metoda organoleptyczna (makroskopowa) - macroscopic method; B - metoda przemywania Kudriaszowa - Kudriashov's method

Do charakterystyki SH posłużyły wyliczone na podstawie widm absorpcji następujące

względne parametry optyczne: 'Q 280;400- Q280.465- Q465;600- Q465/665; A A /A A , =

^ 290_A?3? ^357—■^•416^’ AlOg K — (lOgA W()— logA ).

współczynnik Q , wyrażający stosunek wartości absorbancji przy' długościach fal A = 465 nm i 665 nm lub 400 nm i 600 nm jest najstarszym i najpowszechniej stosowanym parametrem absorpcyjnym. Wartość tego współczynnika jest ujemnie skorelowana z rozmiarami i masą cząsteczek kwasów huminowych (KH) i nie jest bezpośrednio związana z względnym stężeniem skondensowanych pierścieni aromatycznych [Chen i in. 1977]. Kolejnym współczynnikiem typu Q jest Q , przedstawiający iloraz wartości absorbancji przy długościach fal X: 280 nm i 465 nm lub 280 nm i 400 nm. Parametr ten dobrze charakteryzuje stopień zaawansowania procesu humifikacji SH i wartość jego maleje w miarę postępu tego procesu [Gonet, Dębska 1993,1998]. Współczynnik A A /A A ? określa stosunek nachyleń krzywej widmowej w obszarze krótkofalowym widma i pozwala na obserwację zmian zachodzących w obszarze absorpcji struktur aromatycznych. Wyższe wartości tego współczynnika świadczą o tym, że dana molekuła cechuje się wyższym udziałem struktur absorbujących w obszarze charakterystycznym dla fenoli i hydroksy- kwasów aromatycznych oraz niższym stopniem upakowania, tj. większymi rozmiarami [Gołębiowska i in. 1991]. Parametr Alog K daje możliwość uszeregowania kwasów huminowych pod względem ich przeobrażenia (zhumifikowania). Stopień zhumifikowania KH jest tym wyższy, im niższa jest wartość Alog K [Kumada 1987]. Dla związków chemicznych o zdefiniowanej w sensie chemicznym strukturze charakterystycznym parametrem spektralnym jest współczynnik absorbancji właściwej przedstawiający wartość aborbancji przy' określonej długości fali 1 cm warstwy roztworu określonego związku o stężeniu 1 m o l - d m W przypadku roztworów SH, z powodu ich polidysper- syjności, a także różnej zawartości popiołu najczęściej stosuje się współczynniki absorbancji właściwej dla określonych długości fal, wyrażające stosunki wartości absorbancji A(A) roztworu w przeliczeniu na zawartość węgla w badanym roztworze i grubości warstwy roztworu (e. = A ^)/C-d). Zmiana wartości tego współczynnika świadczy7 o zmianie ilości grup absorbujących promieniowanie przy określonej długości fali [Kumada 1987].

(4)

TABELA 2. Względne wartości parametrów absorpcyjnych roztworów SH próbek torfu niskiego i wysokiego

TABLE 2. Relative values o f absorption parameters o f HS solutions o f low-moor and high-moor peat samples

Próbki torfii Peat samples

Parametry absorpcyjne roztworów SH z torfów Absorption parameters o f peat HS solutions

^ 280/400 S Q 280.-465 ^41X1/600 ! ^ 465'665 I A A }/AA^ Alog K Tori'niski* Low-moor peat 3,48“* 7,30“ I 7.39a 6.40J 1.03b 0.87“ Torf wysoki* High-moor peat 3,15b ] 6.46b 6,66b 15.93h 11.09a 0.8 l b

* Średnie oznaczone różnymi literami różnią się między sobą istotnie p<0.05 - averages marked with the different letters are significantly different for p<0.05

Substancje humusowe (SH) wyekstrahowane z próbek torfu wysokiego charakteryzują się istotnie niższymi wartościami wszystkich wyliczonych współczynników- Q i parametru Alog K w porównaniu z ich odpowiednikami wyekstrahowanymi z próbek torfu niskiego. Jedynie wartość współczynnika AA /AA jest wyższa dla alkalicznych ekstraktów uzyskanych z torfu wysokiego w porównaniu z ekstraktami kwasów' humusowych wyizolowanych z torfu niskiego (tab. 2).

Stwierdzono również, że wartości współczynników absorbancj i właściwej wyliczone dla zakresu UV są wyższe dla SH wyodrębnionych z torfu niskiego w porównaniu z SH wyizolowanymi z próbek torfu wysokiego. Odwrotną tendencję obserwuje się dla wartości współczynników absorbancji właściwej wyliczonych dla długofalowej części widma (od 480 do 665 nm) (tab. 3).

Na podstawie uzyskanych średnich wartości względnych parametrów optycznych SH pochodzących z 29 próbek torfowych (14 z torfu niskiego i 15 z torfu wysokiego), podjęto próbę ich zakwalifikowania do dwóch grup, wykorzystując do tego celu analizę funkcji dyskryminacyjnej. Główną ideą analizy-' funkcji dyskryminacyjnej jest rozstrzyganie, czy grupy różnią się ze względu na średnią pewnej zmiennej, a następnie wykorzystanie tej zmiennej do przewidywania przynależności nowych przypadków do określonych grup. Jeżeli określona zmienna przyjmuje zasadniczo różne wartości dla przypadków należących do odmiennych grup. to już ta jedna zmienna może być użytecznym ..klasyfikatorem'’ przynależności do określonej grupy, ponieważjęj wartość dobrze dyskryminuje (odróżnia) porównywane grupy; Do weryfikacji, czy dana zmienna dyskryminuje (różnicuje) grupy, stosuje się test F.

TABELA 3. Względne wartości współczynników absorbancji właściwej roztworów SH próbek torfu niskiego i w ysokiego

TABLE 3. Relative values o f specific absorbancy coefficients o f HS solutions o f low- moor and high-moor peat samples

Próbki torfu Peat samples

Współczynniki absorbancji właściwej roztworów' SH torfów Specific absorbancy coefficients o f peat HS solutions

C 280 ** 3 2 0 I ^ 360 £4 8 0 f «o £ 6 (I0 Torf niski* Low-moor peat 5 0 9 . 0 a 3 7 3 , 3 “ 2 4 4 . 8 a 6 0 .7b 3 7 .4 1’ 2 0 ,2 h Torf wysoki* [ 4 7 2 , 0 b High-moor peat j 3 3 9 , 9 b 2 3 5 . 2 b 6 4 .9a 4 2 ,6 a 2 5 ,4 “

* Średnie oznaczone różnymi literami różnią się między sobą istotnie przy p<0.05 - averages marked with the different letters are significantly different for p<0.05

(5)

TABELA 4. Klasyfikacja typów torfu na podstawie wartości ich parametrów' fizykochemicznych

TABLE 4. Classification o f peat types on the basis o f values o f their physicochemical parameters

Liczba przypadkow No o f causes n=29

Wyniki analizy funkcji dyskryminacyjnej Results o f discriminant function analysis

Lam bda Wilksa = 0,0042; F = 660*.20; p <0,0001

Wilks' Lam bda = 0.0042: F = 660.20; p<0.0001 Lambda Wilksa Walks' Lambda Cząstk. Wilksa Partial Lambda Poziom p p-level Zaw. wody Water content 0,005119 0.883613 0,111136 pH (H ,0) pH (KC1) 0,005049 0.004596 0.896008 0.984156 0,133425 0.567133 X 0.004764 0.949485 0,302519 Popielnosc Ash content 0,007023 0,644147 0,002660 S R T -D .D . 0,006638 0,681483 0,005027 Corj, 0.004546 0.994991 0.748284

W praktyce pojedyncze zmienne nie zapewniają właściwego rozróżnienia (dyskryminacji) i dlatego w celu właściwej i poprawnej klasyfikacji wykorzystuje się na ogół zespół cech (parametrów, zmiennych). Znajomość takich parametrów pozwala nam dobierać je w; celu sprawdzania przynależności poszczególnych przypadków do określonej grupy

Jeżeli w metodzie analizy' funkcji dyskryminacyjnej klasyfikacja przypadków do określonej grupy odbywa się poprzez wykorzy stanie wielu zmiennych, to zamiast wartości jednowymiarowej statystyki o rozkładzie F obliczamy wartość wielowymiarową statysty ki A (lambda) Wilksa o rozkładzie F. Jej wartość mieści się w zakresie od 1.0 (żadnej mocy dyskryminacyjnej - różnicującej) do 0,0 (doskonała moc dyskryminacyjna - różnicująca). Wkład danej zmiennej w proces dyskryminacji grup określa cząstkowa

wartość statystyki A (lambda) Wilksa. Im mniejsza wartość tego parametru, tym większa swoista moc dyskryminacyjna (od­ różniająca) danej zmiennej.

Z danych zawartych w tabeli 4 widać, że rozróżnienie (dyskryminacja) typów torfu na podstawie wartości średnich 7 parametrów fizykochemicznych jest wysoce istotne (lambda Wilksa' A = 0,0042; F = 660,20; p<0,0001). Największy wkład spośród ba­ danych parametrów w odróżnienie obu ty­ pów torfu stwierdzono dla stopnia rozkładu torfu i popielności (najniższa wartość cząst­ kowej lambdy Wilksa).

TABELA 5. Macierz klasyfikacji na podstawie wartości parametrów- fizykochemicznych TABLE 5. Matrix o f classification on the basis o f values o f their physicocliemical parameters Próbki torfu Peat samples Macierz klasyfikacji Matrix o f classification Poprawne Correct [%] N L-M W H-M Torf niski (N) Low-moor peat (L-M) 100,0 14 0 Torf wysoki (W7) High-moor peat (H-M) 100,0 0 15 Razem - Total 100.0 14 15

(6)

TABELA 6. Klasyfikacja typów torfu na podstawie wartości parametrów optycznych ich alkalicznych ekstraktów

TABLE 6. Classification o f peat types on the basis o f values o f optical parameters o f their alkaline extracts

Liczba Wyniki analizy funkcji dyskryminacyjnej przypadków Results o f discriminant function analysis

N o o f causes Lam bda Wilksa = 0,38-0.34: F := 13.4-11,5: pO.OOOl n=29 Wilks' Lam bda :- 0.38-0.34; F == 13.4-: 11.5; p<0.001

Lambda Wilksa Czastk. Wilksa Poziom p Wilks' Lambda Partial Lambda p-level

Q 280/400 0,453178 0,758277 0,010743 Q 4(Ó;Y)(Ó 0,350291 0.980998 0.501875 a a'/A a, 0,463863 0,740810 0,007902 AlogK 0.348044 0,987330 0.584043 f 2*r 0,937668 0,409537 0,000003 £400 0,624389 0,615017 0,000555 ^ 530 0,388319 0,988901 0,600983

Przedstawiona macierz klasyfikacji (tab. 5) pokazuje, że w różnicowaniu obu typów torfu na podstawie średnich wartości ich parametrów fizykochemicznych, poszczególne przypadki zostały „przyporządkowane"' do określonych grup ze 100% poprawnością. Stosowanie analizy funkcji dyskryminacyjnej ma jedno ważne ograniczenie, zmienne włączane do modelu nie mogą być zbyt redundantne względem siebie, czyli ich wartości liczbowe nie mogą być zbliżone. Jeżeli waitości zmiennych są w 99% podobne do siebie, to nie mogą być użyteczne do rozróżnienia grup. Dlatego też spośród 6 współczynników

absorpcyjnych wyliczonych dla roztwo­ rów SH z torfów wybrano 4 (Qo80 400i

Q465?l)5-

A A /A A ,, AlogK), a spośród współczynników absorbancji właściwej wybrano 3 (A280. A400, A fJ .

Z danych zamieszczonych w tabeli 6 wynika, że dyskryminacja typów torfu na podstawie średnich wartości współczyn­ ników absorpcyjnych i absorbancji właści­ wej SH jest istotna (lambda Wilksa mieści się w przedziale 0,34-^0,38; F = 11 ,5-t- 13,4; p<0,0001. Największy7 wkład w dyskryminację obu typów torfu spośród współczynników absorpcyjnych zaobser- w ow ano dla Q 280, 0Q, A A ,/A A ,. f 280 i eĄQQ są najlepszymi ^klasyfikatorami*’ spośród współczynników absorbancji właściwej (najniższa wartość cząstkowej lambdy Wilksa).

Dyskryminacja typów torfu na podstawie średnich wartości współczynników absorpcyjnych i absorbancji właściwej ich alkalicznych ekstraktów przebiegła z wydajnością” 93%. Tylko jeden przypadek w obrębie danej grupy został niepoprawnie sklasyfikowany (tab. 7).

TABELA 7. Macierz klasyfikacji na podstawie wartości parametrów optycznych ekstraktów alkalicznych

TABLE 7. Matrix o f classification on the basis o f values o f optical parameters o f alkaline extracts Próbki torfli Peat samples M acierz kiasyfikacj i Matrix o f classification Poprawne Correct [%] N L-M W H-M Torf niski (N) Low-moor peat (L-M) 92,9 13 1 Torf wysoki (WT) High-moor peat (H-M) 93.3 1 14 j Razem - Total 93,1 14 15

(7)

WNIOSKI

1. Parametry fizykochemiczne J a k i optyczne pozwalają na prawidłowe odróżnienie torfu wysokiego (sfagnowego) od torfu niskiego (turzycowego).

2. Wykazano, że każdy z siedmiu badanych fizy kochemicznych parametrów, odnoszących się do próbek torfowych, jest dobrym ,,klasyfikatorem”, jednak spośród tych parame­ trów największy- wkład w dyskryminację obu ty-pów torfu mają: stopień rozkładu torfu i popielność.

3. Wartości wszystkich wyliczonych względnych parametrów optycznych z widm w zakre­ sie UV i VIS wskazują, że substancje humusowe pochodzące z obu typów torfu różnią się pod względem jakościowym. Ich molekuły pochodzące z próbek torfu wysokiego cechują się większymi rozmiarami w porównaniu z cząsteczkami SH pozyskanymi z pró­ bek torfu niskiego.

4. Parametry’ optyczne alkalicznych ekstraktów z torfów też są dobrymi „klasyfikatora­ mi” typów torfu, a największy wkład w dyskryminację mają: współczynniki absorban­ cji właściwej z} przy 280 nm i 400 nm oraz Q280/400 i AA/AA^.

LITERATURA

BRANDYK T., SZATYLOWICZ J. 2002: Właściwości fizyczne torfu. W: Torfowiska i torf. P. Unicki (red.). Wyd. Akademii Rolniczej w Poznaniu: 408-426.

CHEN Y., SENES1 M.. SCHNITZER M. 1977: Information provided on humic substances by E /E ratios. Soil Sci. Soc. Am. J. 41. 2: 352-358. 4 6 GAWTJK J. 1992: Wpływ stopnia rozkładu torfu i stanu jego zagęszczenia na właściwości wodno-

retencvjne utworów torfowych. Rozpr. Hab. Insi.. Melior. Użyt. Ziel.. Falenty'. 13-32.

GOŁĘBIOWSKA D.. GIEGUŻYŃSKA E., MILCZAREK I., PUZYNA W., SZCZODROWSKA B., SIENKIEWICZ M. 1991: Właściwości substancji humusowych gleb. W: Ekologiczne procesy w monokulturowych uprawach zbóż. Wyd. Nauk. U AM, Poznań: 133-163.

GONET S.S., DĘBSKA B. 1993: Charakterystyka kwasów huminowych powstałych w procesie rozkła­ du resztek roślinnych. Zesz. Probl. Post. Nauk Roln. 411: 241-248.

GONET S.S., DĘBSKA B. 1998: Properties o f humic acids developed during humification process o f post-harvest residues. Environ. International 24(5/6): 603-608.

KUM ADAK. 1987: Chemistry o f Soil Organic Matter. Japan Scientific Societes Press, Tokyo. Elsevier Scientific Publishing Company, Amsterdam, Oxford. New York: 241 ss.

MAKSIMÓW A. 1965: Torf i jego użytkowanie w rolnictwie. PWRiL, Warszawa: 115-1 2 5 .

MYŚLINSKA E. 2001: Grunty’ organiczne i laboratoryjne, metody ich badania. Wyd. Nauk. PWN, Warszawa: 208 ss.

ORŁOW D.S. GRIŚINAL.A, JEROŚ1ĆEWAH. J. 1969: Praktikiun po biochimii gumusa MGU. Moskwa: 17-25. SCHNITZER M.. KHAN S. (red.) 1978: Soil organie matter. Elsevier, New York: 319 ss.

SZAJDAK L. 2002: Właściwości chemiczne torfu. W: Torfowiska i torf. P. Unicki (red.), Wyd. Akademii Rolniczej w Poznaniu: 432-450.

TOBOLSKI K. 2000: Vademecum Geobotanicum. Przewodnik do oznaczania torfów i osadów jezior­ nych. Wyd. Nauk. PWN, Warszawa: 507 ss.

ZAWADZKi S. 1999: Gleboznawstwo. Państwowe Wydawnictwo Rolnicze i Leśne. Warszawa: 560 ss.

Romualda Bejger

Katedra Fizyki i Agrofizyki, Instytut Inżynierii Rolniczej, Zachodniopomorski Uniwersytet Technologiczny w Szczecinie ul Papieża Pawia VI/3, 71-459 Szczecin

Cytaty

Powiązane dokumenty

PEDAGOGIKA PRZEDSZKOLNA I WCZESNOSZKOLNA

Do budowy przystąpił wójt krzyżacki w końcu 1443 r. w ram ach represji wobec zbuntowanych mieszczan. Tego roku z inspiracji elekto­ ra brandenburskiego Fryderyka II, który

dra Konrada Vani wygłoszonym 2 kwietnia w Żółtym Pałacyku na temat brandenburskich tradycji drukowania wstęg wi- watowych oraz zaproszeniem 20 listopada tego samego

Jed- nakże analiza archiwalnych dokumentów zgromadzonych w Gorzowie ujawnia fakt, że pierwszą wspólnotą Chrześcijan Bez Osobliwego Wyznania na Ziemi Lubuskiej był zbór w

W tym wiaśnie czasie przygotow ania do II rozbioru zostały ukończone. N ie potraktowała też jak o sygnału alarm ow ego pojaw ienia się now ego rosyjskiego

Ujęcie narratologiczne uwydatnia podwójne znaczenie narracji — pojmowanej jako sposób porządkowania świata oraz jako terapia artystyczna pozwalająca uporać się w z

communication strategy, based on the situations characterised by user stance on seeking care and the severity of health risk situation, has an effect on the user’s intention

W trakcie w klejania okazuje się, że jej początek pasuje doskonale, natom iast kilkanaście centym etrów dalej kształt łatki nie pasuje do kształtu ubytku, jest