• Nie Znaleziono Wyników

Conductive Graphitic Networks: From Atoms to Fuel Cells

N/A
N/A
Protected

Academic year: 2021

Share "Conductive Graphitic Networks: From Atoms to Fuel Cells"

Copied!
168
0
0

Pełen tekst

(1)

 

 

Conductive  Graphitic  Networks:  

from  Atoms  to  Fuel  Cells  

 

                   

 

Emanuela  NEGRO  

   

 

         

(2)

                                                             

 

(3)

 

 

Conductive  Graphitic  Networks:  

from  Atoms  to  Fuel  Cells  

 

Proefschrift

 

 

ter  verkrijging  van  de  graad  van  doctor   aan  de  Technische  Universiteit  Delft,  

op  gezag  van  de  Rector  Magnificus  Prof.  ir.  K.  C.  A.  M.  Luyben,   voorzitter  van  het  College  voor  Promoties,  

in  het  openbaar  te  verdedigen  op      

vrijdag  14  November  2014  om  12:30  uur   door      

 

Emanuela  NEGRO  

     

Master  of  Science  in  Chemical  Engineering     at  Politecnico  di  Torino  (IT)  and  KTH  Stockholm  (SE)    

 

(4)

Dit  proefschrift  is  goedgekeurd  door  de  promotoren:    

Prof.  dr.  J.  H.  van  Esch     Prof.  dr.  S.  J.  Picken    

Copromotor:  Dr.  ing.  G.J.M.  Koper    

Samenstelling  promotiecommissie:    

Rector  Magnificus                           Technische  Universiteit  Delft,  voorzitter   Prof.  dr.  J.  H.  Van  Esch                     Technische  Universiteit  Delft,  promotor   Prof.  dr.  S.  J.  Picken                               Technische  Universiteit  Delft,  promotor   Dr.  ing.  G.  J.  M.  Koper     Technische  Universiteit  Delft,  copromotor   Prof.  dr.  F.  Kapteijn  

Prof.  dr.  W.  J.  Briels   Prof.  dr.  P.  Tsiakaras   Prof.  dr.  A.  López  Quintela  

Technische  Universiteit  Delft   Universiteit  Twente  

University  of  Thessaly  

University  of  Santiago  de  Compostela    

 

The   work   described   in   this   thesis   was   carried   out   in   the   Advanced   Soft   Matter   group   at   the   Delft   University   of   Technology   and   was   founded   by   the   Dutch   programme  “A  green  Deal  in  Energy  Materials”  ADEM  Innovation  Lab.  

ISBN:  978-­‐94-­‐6259-­‐374-­‐9

Copyright  ©  2014  by  Emanuela  NEGRO  

Cover  design  by  Alessandro  Squatrito,  Product  Designer   Printed  by  Ipskamp  Drukkers,  Enschede  

All   rights   reserved.   The   author   encourages   the   communication   of   scientific   contents  and  explicitly  allows  reproduction  for  scientific  purposes,  provided  the   proper  citation  of  the  source.  Parts  of  the  thesis  have  been  published  in  scientific   journals  and  copyright  is  subject  to  different  terms  and  conditions.  

An   electronic   version   of   this   thesis   is   freely   available   at   http://repository.tudelft.nl  

(5)

                  Alla  mia  famiglia,   rendervi  orgogliosi  di  me  è  la  mia  gioia  più  grande                            

“It  is  imperfection  -­‐  not  perfection  -­‐  that  is  the  end  result  of  the  program   written  into  that  formidably  complex  engine  that  is  the  human  brain,  and  of   the  influences  exerted  upon  us  by  the  environment  and  whoever  takes  care  of   us   during   the   long   years   of   our   physical,   psychological   and   intellectual   development.”  

Rita  Levi-­‐Montalcini    from  “In  Praise  of  Imperfection'',  1988         “Non  exiguum  temporis  habemus,  sed  multum  perdidimus”   Lucio    Anneo  Seneca,  “De  brevitate  vitae”,  before  49  A.D.  

(6)

                       

(7)

Contents  

 

List  of  Abbreviations  ...  IX  

Introduction  ...  1  

Sustainability  and  Energy  ...  1  

Structure  of  the  thesis  ...  3  

PART  I:  Synthesis  of  Conductive  Graphitic  Networks  ...  5  

1   Characterization  of  Dense  Microemulsion  Systems  ...  7  

1.1   Introduction  ...  8  

1.2   Methods  ...  9  

1.2.1   Phase  diagram  calculation  –  The  geometrical  model  ...  9  

1.2.2   Materials  and  Experimental  Methods  ...  10  

1.2.3   Computational  Methods  ...  10  

1.2.4   Analysis  ...  13  

1.3   Results  ...  16  

1.3.1   Phase  Diagram  Investigation  ...  16  

1.3.2   Conductivity  ...  23  

1.3.3   Scattering  ...  29  

1.4   Conclusion  ...  32  

2   Bicontinuous  Microemulsions  for  Synthesis  of  Platinum  Nanoparticles  ...  35  

2.1   Introduction  ...  36   2.2   Experimental  ...  37   2.2.1   Chemicals  ...  37   2.2.2   Microemulsion  Preparation  ...  37   2.2.3   Microemulsion  Characterization  ...  38   2.2.4   NP  synthesis  ...  38   2.2.5   Reaction  kinetics  ...  38   2.2.6   NP  Characterization  ...  38   2.3   Results  ...  39   2.3.1   Reactants  ...  39   2.3.2   Microemulsion  composition  ...  43   2.3.3   Stability  ...  45   2.4   Discussion  ...  46   2.5   Conclusion  ...  49  

3   Synthesis  of  Graphitic  Networks  from  Dense  Microemulsions  ...  51  

3.1   Introduction  ...  52  

3.2   Experimental  ...  52  

3.2.1   Materials  ...  52  

3.2.2   Catalyst  Preparation  and  Support  Transfer  ...  52  

3.2.3   Chemical  Vapor  Deposition  ...  53  

3.2.4   Instrumentation  ...  54  

3.3   Results  and  Discussion  ...  54  

(8)

PART  II:  Conductive  Carbon  Networks  for  PEM  Fuel  Cells  Electrodes  ...  63  

4   PEM  Fuel  Cells:  History,  Basics  and  Challenges  ...  65  

4.1   Fuel  cells  ...  65  

4.2   PEM  Fuel  Cells:  Basics  and  thermodynamics  ...  68  

4.3   PEMFC  Electrodes  ...  70  

4.3.1   Electrode  Design  ...  70  

4.3.2   Electrode  Degradation  ...  71  

4.3.3   Electrode  Activity  and  Cost  ...  72  

5   CNNs  as  Durable  Platinum  Support  for  PEM  Electrodes  ...  75  

5.1   Introduction  ...  76  

5.2   Experimental  ...  77  

5.2.1   Materials  ...  77  

5.2.2   Catalyst  Deposition  ...  77  

5.2.3   Characterization  ...  78  

5.3   Results  and  Discussion  ...  79  

5.3.1   Carbon  Support  Characterization  ...  79  

5.3.2   Platinum  Deposition  ...  81  

5.3.3   Electrochemical  Characterization  ...  82  

5.4   Conclusion  ...  87  

6   Non  noble  Fe-­‐N/CNNs  as  ORR  catalysts  for  low  temperature  fuel  cells  ...  89  

6.1   Introduction  ...  90  

6.2   Experimental  ...  91  

6.2.1   Chemicals  ...  91  

6.2.2   Carbon  Support  and  Electrocatalyst  Synthesis  ...  91  

6.2.3   Support  and  Electrocatalyst  Characterization  ...  92  

6.2.4   Electrochemical  characterization  ...  92  

6.3   Results  and  Discussion  ...  93  

6.3.1   Physical-­‐chemical  characterization  of  Supports  and  Electrocatalysts  ...  93  

6.3.2   Electrochemical  Characterization  ...  98  

6.4   Conclusion  ...  102  

7   Pt  Electrodeposition  on  CNNs  Grown  directly  over  Carbon  Paper  ...  103  

7.1   Introduction  ...  104  

7.2   Experimental  ...  106  

7.2.1   Materials  ...  106  

7.2.2   CNNs  growth  over  CP  ...  106  

7.2.3   Oxidation  of  carbon  support  and  Pt  Electro-­‐deposition  ...  107  

7.2.4   Electrochemical  Characterization  ...  107  

7.2.5   Instrumentation  ...  108  

7.3   Results  and  Discussion  ...  108  

7.3.1   Influence  of  synthesis  parameters  on  ESA  and  Corrosion  Resistance  ...  108  

7.3.2   CNN  Electrochemical  Functionalization  ...  114  

7.3.3   Pt  Electro-­‐deposition  ...  117  

7.3.4   Durability  Tests  ...  119  

(9)

Summary  ...  123   Samenvatting  ...  129   Bibliography  ...  135   Acknowledgements  ...  149   Curriculum  Vitae  ...  153   Publications  ...  154                                                

(10)

                                                                 

(11)

 

List  of  Abbreviations  

 

AA   Atomistic  (all  atoms)   AC   After  Corrosion  

ADT   Accelerated  Durability  Test   AFC   Alkaline  Fuel  Cell  

AOT   Dioctyl  sodium  sulfosuccinate  

BC   Before  Corrosion  

BET   Brunauer–Emmett–Teller  theory  of  physical  adsorption  

BME   Bicontinuous  Microemulsions  

CG   Coarse-­‐Grained  

CNF   Carbon  Nano  Fibers   CNN   Carbon  Nano  Network   CNTs   Carbon  Nano  tube   CP   Carbon  Paper   CV   Cyclic  Voltammetry  

CV   Coefficient  of  Variation  (in  Chapter  3)   CVD   Chemical  vapor  Deposition  

DLC   Double  Layer  Capacitance   DLS   Dynamic  Light  Scattering   DMFC   Direct  methanol  Fuel  Cell  

ECSA   Electrochemically  Active  Surface  Area   ED   Electro-­‐deposition  

EDS   Energy  Dispersive  Spectroscopy   ESA   Electrochemical  Surface  Area   FC   Fuel  Cell  

FF   Force  Field  

GDL   Gas  Diffusion  Layer  

IEA   International  Energy  Agency   LSV   Linear  Sweep  Voltammetry   MCFC   Molten  Carbonate  Fuel  Cell  

MD   Molecular  Dynamics  

ME   Microemulsions  

MeOH   Methanol  

MOF   Metal  Organic  Framework   MPL   Microporous  Layer  

(12)

MSD   Mean  Squared  Displacement  

NPs   Nanoparticles  

OCV     Open  Circuit  Voltage   ORR   Oxygen  reduction  Reaction   PAFC   Phosphoric  Acid  Fuel  Cell   PEM   Polymer  Electrolyte  Membrane   PFSA   Perfluorosulphonic  acid  

RDE   Rotating  Disc  Electrode  

RHE   Reversible  Hydrogen  Electrode   RM   Reverse  Micelles  

SAXS   Small  Angle  X-­‐ray  scattering   SEM   Scanning  Electron  Microscopy   SOFC   Solid  Oxide  Fuel  Cell  

TEM   Transmission  Electron  Microscopy   TGA   Thermo  Gravimetric  Analysis     XPS   X-­‐ray  Photoelectron  Spectroscopy   XRD   X-­‐ray  Diffraction  

(13)

Introduction  

 

   

Sustainability  and  Energy  

The   last   decades   have   been   characterized   by   an   increasing   concern   about   energy   production  and  management,1  as  direct  consequence  of  the  consolidated  awareness  of  

both  scarcity  of  widely  used  earth  resources  and  worry  about  how  pollution  created  by   our  lifestyle  affects  the  planet.2,  3  The  concept  of  sustainable  development,  first  defined  

in  1987  in  the  report  “Our  common  Future”  of  the  United  Nations  World  Commission  on   Environment   and   Development   as   “Development   that   meets   the   needs   of   the   present   without  compromising  the  ability  of  future  generations  to  meet  their  own  needs”,4,  5  has   become   more   and   more   relevant,   being   the   main   driving   force   to   technological   innovations.1   Words   such   as   “sustainable”,   “renewable”,   “clean”   or   “green”   are   appearing  in  every  field  of  technology  and  are  recurring  in  the  political  agenda  of  every   country.2,  5    

Fossil  fuels  are  the  main  energy  source  exploited  nowadays,  in  2012  they  supplied  more   than   80%   of   the   world   primary   energy   consumed   and   in   2011   almost   70%   of   world   electricity   was   produced   from   them   as   recorded   by   the   International   Energy   Agency.6   Fossil  fuels  are  not  sustainable:  the  rate  at  which  they  are  consumed  is  by  far  quicker   than  the  rate  at  which  they  are  naturally  produced.  Fossil  fuels  are  not  environmentally   friendly,  when  burned  they  release  CO2,  being  the  greenhouse  gas  mostly  contributing  

to  global  warming,  as  well  as  other  environmental  poisonous  species  such  as  nitrogen   oxides,  sulfur   dioxide   and   other  volatile   organic   compounds.7   Fossil   fuels   are   normally  

used   in   energy   systems   with   very   low   efficiency,   e.g.   the   efficiency   of   combustion   engines  lies  between  20%  and  30%7.  Finally,  the  majority  of  the  global  oil  suppliers  are  

politically  unstable  countries,  dependency  on  which  is  rather  not  to  count  on  to  build  a   stable  economy.  The  second  most  exploited  source  of  non  renewable  energy  is  nuclear   fission,  being  the  5.1%  of  the  world  primary  energy  consumed  in  2011  and  the  source  of   the   11.7%   of   the   electricity   produced   in   2012.6   Nuclear   power   is   greenhouse   gas  

emission-­‐free.   However,   no   sustainable   solution   to   process   the   radioactive   waste   has   been  developed  yet  8,  9  and  uranium  is  expected  to  be  exhausted  in  less  then  100  years.  

Nuclear  fusion  is  in  principle  safer  and  more  attractive  because  of  the  easier  radioactive   waste   management,   but   it   has   not   reached   yet   a   sufficient   technological   level   to   be   profitable.7,  9  

(14)

Introduction  

   

According   to   forecast   for   world   population   growth   and   economical   development,   without   determined   action,   previsions   are   dramatic:   by   2050   energy   demand   will   quadruple,  resulting  in  an  80%  increase  in  CO2  emissions.2  Beside  changing  our  lifestyle  

in  order  to  reduce  energy  consumption  and  waste,  transition  to  a  carbon-­‐free  economy   must   be   encouraged   and   advertised   by   public   policies,   not   only   to   preserve   the   environment  but  also  to  put  the  basis  for  future  prosperity  and  peace.1,  3  International   organizations  have  set  up  environmental  treats  such  as  the  Kyoto  protocol  to  the  United   Nations   Framework   Convention   on   Climate   Change   to   limit   the   increase   of   global   temperature  to  2  degrees  Celsius;  in  the  last  100  years  the  average  increase  was  0.74  +/-­‐   0.18°.7  Developed  countries  need  to  meet  75-­‐100%  of  power  demand  with  carbon-­‐free   sources,  compared  to  30%  globally  today,  to  hit  the  emission  targets.3  The  rest  could  be  

produced  by  coal  with  carbon  dioxide  capture  and  storage  and  by  natural  gas.3    

In  order  to  answer  the  question  “How  to  power  the  world  in  a  sustainable  way?”  one   of  the  first  things  to  consider  is  obviously  to  reduce  to  a  minimum  or  exclude  fossil  fuels   consumption  from  our  daily  life.  

One   solution   is   to   use   renewable   energy,   that   comes   from   sources   naturally   replenished   independently   on   their   consumption,   such   as   solar   light,   wind,   tides,   and   geothermal  energy  naturally  stored  in  the  Earth.2  Great  development  in  this  sense  has   been  achieved  in  the  last  years,  and  from  1973  to  2011  the  world  total  primary  energy   and  electricity  produced  from  these  sources  has  increased  from  0.1  to  1%  and  from  0.6   to   4.5%,   respectively,6   mainly   thanks   to   government   subsidies   both   for   research   and   installations.1  The  technological  innovation  is  directly  proportional  to  public  investment,   as   the   correlations   to   patent   filing   demonstrates.3   Beside   the   fact   that   the   source   is   renewable,   energy   production   by   these   techniques   does   not   affect   the   environment   with  polluting  emissions.2  Additionally,  wind  turbines  and  solar  panels  could  be  installed   also   in   remote   areas   where   connection   to   the   grid   is   impossible,   allowing   increase   in   quality  of  life  also  in  poorer  countries.10  Unfortunately,  renewable  energy  efficiency  is   not   very   high,   e.g.it   is   around   15%   for   solar   energy,   and   technology   is   still   expensive,   even   though   the   price   has   been   constantly   falling   during   the   last   30   years,   e.g.   photovoltaic  about  10%  per  year  and  wind  turbine  roughly  5%  per  year.3  Moreover,  the   supply  of  energy  from  these  sources  is  not  continuous  but  ruled  by  natural  fluctuations.   Renewable   energies   must   be   then   combined   either   with   other   sources   of   energy,   working   as   backup,   or   excess   of   energy   in   peak   production   time   has   to   be   stored,   minimizing   the   energy   losses,   so   that   it   can   be   used   during   the   production   breaks.3   Energy  can  be  stored  in  different  ways,  for  example  mechanically  as  potential  energy  in   pumped  hydroelectric  storage  or  as  kinetic  energy  in  flywheel  storage,  as  electricity,  in   capacitors  and  supercapacitors,  or  as  chemical  energy,  in  batteries  or  with  electrolyzers   by  producing  hydrogen  from  water  electrolysis.8,  11  Led  by  China,  Europe,  USA  and  Japan   the  alternative  energy  sector  is  booming  worldwide.3  China,  Germany  and  Europe  plan   to  have  respectively  15%,  35%  and  20%  of  electricity  produced  by  renewable  by  2020.2,  3  

Another  path  to  reduce  economic  dependency  on  fossil  fuels,  is  to  increase  energy   production  efficiency  of  currently  available  technologies.5  In  this  sense,  fuel  cells  are  a  

very   promising   future   technology.12,   13   Fuel   cells   are   simple   devices   in   which   a   fuel   (hydrogen,   methanol,   ethanol,   methane   etc.)   and   oxygen   electrochemically   react   producing   electricity   and   heat.   Their   biggest   advantages   over   internal   combustion  

(15)

Sustainability  and  Energy  

   

engines  are  none  or  low  CO2  emissions,  depending  on  the  fuel,  electrical  efficiency  up  to  

60%  and  combined  heat  and  power  efficiency  up  to   90%,  silent  operation,  no  moving   parts   and   thus   long   mechanic   life   time   and   no   need   of   lubricants.12,   14,   15   These  

advantages   make   fuel   cells   promising   alternatives   to   combustion   engines   both   for   portable   and   stationary   combined   heat   and   power   applications.16   Especially   for   the  

transport  sector,  fuel  cells  have  major  advantages  over  batteries,  a  more  mature  power   alternative  for  automotive  applications.  They  have  a  much  faster  refueling  time  and  a   longer  ride  range  because  of  higher  energy  density.12,  13,  17  Replacing  combustion  engines   with  fuel  cells  in  the  transport  sector  would  have  an  incredible  impact  on  CO2  emissions,  

being  the  sector  accounting  for  22%  of  European  CO2  emissions  and  25%  primary  energy  

consumption   (data   from   2009).7   The   main   issues   preventing   the   mass-­‐scale  

commercialization  of  such  promising  devices  are  their  cost  and  their  durability  that  are   not  meeting  the  worldwide  target  requirements,  as  well  as  the  necessity  to  find  cheap,   clean  and  efficient  solution  to  produce  and  store  hydrogen.13  

It   is   clear   that   in   this   situation,   research   aimed   to   improve   existing   technology   in   terms  of  material  costs,  higher  efficiencies  and  safer  management  is  crucial.  Especially   electrochemical  devices,  such  as  batteries,  capacitors,  supercapacitors,  electrolyzers  and   fuel  cells  play  a  fundamental  role  in  the  future  of  energy  conversion  and  storage.11,  18  

Large  part  of  the  research  in  these  sectors  is  aimed  at  the  improvement  of  carbon-­‐based   materials,   widely   employed   in   these   devices   because   of   their   high   electronic   conductivity,   light   weight,   low   cost,   easy   and   versatile   preparation,   abundance   of   raw   materials.  Improvements  are  intended  in  terms  of  surface  area  and  durability  in  order  to   allow   faster   and   easier   mass   transports,   better   dispersion   of   functionalizing   materials   and  increase  device  lifetime.19-­‐21  Graphitic  materials,  such  as  carbon  nano  tubes,  carbon  

nano  fibers  and  graphene,  have  attracted  a  great  interest  in  many  fields  of  technology   because  of  their  excellent  electrical,  mechanical  and  chemical  properties.18-­‐21  

This  thesis  modestly  contributes  to  this  global  research  by  investigating  new  carbon   nanomaterials  and  their  use  in  Fuel  Cell  electrodes.  These  new  nanomaterials  are  based   on   an   interconnected   carbon   nanostructure,   called   Carbon   Nano-­‐Networks   (CNNs),   synthesis  of  which  has  recently  been  patented  by  TU  Delft  spin-­‐off  company  Carbon  X.22  

Structure  of  the  thesis  

The   thesis   is   a   collection   of   six   publications,   thus   every   chapter   provides   all   the   introductory   and   experimental   information   to   understand   it   independently   on   the   others.  The  work  is  divided  into  two  parts,  the  first  one  deals  with  the  synthesis  of  CNNs   and  the  second  part  with  their  use  in  Fuel  Cells  electrodes.    

CNNs   are   produced   by   Chemical   Vapor   Deposition   (CVD)   of   ethene   over   metal   catalyst   nanoparticles   synthesized   in   bicontinuous   microemulsions   (BMEs).   Chapter   1   deals   with   the   characterization   of   dense   microemulsions,   both   experimentally   and   computationally,   using   a   coarse-­‐grained   molecular   dynamics   simulation   tool.   Bicontinuity   of   microemulsions   is   visualized.   Chapter   2   deals   with   the   synthesis   of   Platinum  nanoparticles  (NPs)  in  BMEs.  We  analyze  the  effect  of  the  precursors  and  of   the   microemulsion   composition   on   the   size,   polidispersity   and   stability   of   the   NPs  

(16)

Introduction  

   

deals  with  the  synthesis  of  CNNs  via  CVD  of  ethene  over  metallic  particles  synthesized  in   BMEs.  The  effect  of  synthesis  parameters  on  the  final  structure  is  studied.  Properties  of   CNNs,  such  as  porosity  and  conductivity  are  investigated.  

In   the   second   part,   Chapter   4   gives   a   brief   overview   of   PEM   Fuel   Cells   basics,   materials   and   challenges   while   Chapters   5-­‐7   deal   with   the   use   of   CNNs   as   electrode   material.  In  Chapter  5,  activity  and  durability  of  Pt  deposited  over  CNNs  is  compared  to   Pt   over   CNTs   and   to   commercial   catalyst.   In   Chapter   6,   CNNs   are   used   as   support   for   non-­‐noble   metal   catalyst.   Performances   are   evaluated   in-­‐situ   and   ex-­‐situ.   Chapter   7   deals   with   an   innovative   manufacturing   technique   for   an   electrode:   CNNs   are   grown   directly  over  carbon  paper.  Resistance  to  corrosion  as  a  function  of  synthesis  parameters   is   evaluated.   Pt   is   electrodeposited   over   the   synthesized   electrode   support,   and   its   activity  and  durability  is  evaluated  and  compared  to  commercial  catalyst.

(17)

PART  I    

Synthesis  of  Conductive  Graphitic  Networks  

 

                         

(18)

                                                                     

(19)

 

1 Characterization  of  Dense  

Microemulsion  Systems  

Microemulsions   are   exciting   systems   that   are   promising   as   tunable   self-­‐assembling   templating   reaction   vessels   at   the   nanoscale.   Determination   of   the   nano-­‐structure   of   microemulsions  is,  however,  not  trivial,  and  there  are  fundamental  questions  regarding   their   design.   We   were   able   to   reproduce   experimental   data   for   an   important   microemulsion  system,  sodium-­‐AOT/n-­‐heptane/water,  using  coarse-­‐grained  simulations   involving  relatively  limited  computational  costs.  The  simulation  allows  visualization  and   deeper  investigation  of  controversial  phenomena  such  as  bicontinuity  and  ion  mobility.  

Simulations   were   performed   using   the   Martini   coarse-­‐grained   force   field.   AOT   bonded  parameters  were  fine-­‐tuned  by  matching  the  geometry  obtained  from  atomistic   simulations.  We  investigated  several  compositions  with  a  constant  ratio  of  surfactant  to   oil   while   the   water   content   was   varied   from   10   to   60%   in   weight.   From   mean   square   displacement  calculation  of  all  species,  it  was  possible  to  quantify  caging  effects  and  ion   mobility.   Average   diffusion   coefficient   of   charged   species   qualitatively   matched   the   variation   in   conductivity   as   a   function   of   water   content.     The   scattering   function   was   calculated   for   the   hydrophilic   species   and   up   to   40%   water   content   quantitatively   matched   the   experimental   data   obtained   from   Small   Angle   X-­‐ray   Scattering   measurements.   In   particular,   bicontinuity   of   water   and   oil   was   computationally   visualized  by  plotting  the  coordinates  of  hydrophilic  beads.  Equilibrated  coarse-­‐grained   simulations   were   reversed   to   atomistic   models   in   order   both   to   compare   ion   mobility   and   to   catch   finer   simulation   details.   It   was   possible   to   capture   the   intimate   ion   pair   interaction  between  the  sodium  ion  and  the  surfactant  head  group.

 

   This  chapter  is  published  as:  

(20)

Chapter  1  

   

1.1  Introduction  

Bicontinuous  Microemulsions  (BMEs)  are  a  special  class  of  thermodynamically  stable,   single  phase  emulsions,  type  IV  in  the  Winsor  classification,23  where  surfactant  is  mixed  

with  almost  equal  amounts  of  oil  and  water  in  such  a  way  that  both  water  and  oil  form   continuous   channels.   Such   a   structure   is   stabilized   by   a   large   amount   of   surfactant   (~50%  in  weight  with  respect  to  the  final  mixture).  The  concept  of  BMEs  was  introduced   in  197624  and  since  then,  these  colloidal  structures  have  been  extensively  studied  using  

various  techniques.  However,  their  potential  for  application  has  been  largely  overlooked   in  comparison  to  that  of  reverse  micelles  (RMs).    

BMEs  recently  resulted  in  an  optimal  template  for  synthesis  of  metallic  nanoparticles  

25-­‐28  and  Metal  Organic  Framework  (MOF)  nanocrystals,29  for  enzymatic  catalysis,30  and  

for  assembly  of  mesoporous  nanocomposites.31  Additionally,  they  recently  attract  again   great  interest  for  surfactant  “Enhanced  Oil  Recovery”  applications  having  oil  scarcity  as   the  main  driving  force.32  BMEs  provide  a  sponge-­‐like  mesoporous  nanostructure  with  a   large  interfacial  area  between  polar  and  apolar  domains.  They  allow  the  confinement  of   species  in  the  water  phase  as  do  RMs  but  they  have  the  advantage  that  the  template   dynamics  is  itself  constrained.  For  example,  these  structures  are  believed  to  be  crucial   for   the   synthesis   of   stable   nanoparticles   since   they   allow   the   metal   precursor   ions   to   diffuse   freely   but   they   do   not   allow   the   diffusion   of   nanoparticles.27   In   that   way,   the   reaction  timescale  is  much  faster  than  the  growth  timescale,  resulting  in  the  formation   of  monodisperse  nanoparticles.  Additionally,  higher  yields  can  be  achieved  because  of   the   higher   water   content   (up   to   40%   in   weight)   compared   to   conventional   RM   synthesis.26,  27  Understanding  how  ME  structure  depends  on  composition  is  crucial  for   providing  a  molecular  basis  for  interpreting  experimental  results  and  investigating  the   effects  on  for  example  nanoparticles  synthesized  in  them.  

Molecular   Dynamics   (MD)   simulations   have   been   widely   used   to   investigate   microemulsion  systems,  especially  concerning  RM  size,  shape  and  shape  transitions,33-­‐35  

water  behaviour  as  a  function  of  the  distance  from  the  interface  36-­‐41  and  head-­‐group-­‐ solute  interactions.40,  42,  43  However,  simulations  of  ternary  systems  were  limited  to  low  

surfactant  concentrations  and  deal  mainly  with  RM  systems.  One  of  the  reasons  is  that   most  of  the  simulations  were  atomistic,  or  all  atoms  (AA),  whose  computational  costs   are  in  general  too  high  to  capture  timescales  and  length  scales  necessary  to  characterize   microemulsion   systems   containing   large   amounts   of   surfactant,   in   which   diffusion   is   slowed  down  by  the  higher  viscosity  of  the  system  and  where  characteristic  dimensions   are  on  the  order  of  tens  of  nanometers.44  

Coarse-­‐grained   (CG)   simulations   allow   significant   computational   cost   reduction   compared   to   AA   simulations   and   are   suitable   to   simulate   systems   requiring   microseconds  and  micrometres.  Hybrid  systems,  using  AA  for  interfacial  regions  and  CG   for  the  rest,  have  also  been  adopted  to  reduce  computational  costs.44,  45  The  Martini  CG   force-­‐field   (FF),   a   fast,   easy   and   efficient   simulation   tool,   was   developed   in   2003   by   Marrink  at  al.  46  for  biomolecular  applications,  becoming  in  less  than  a  decade  one  of  the   most  widely  used  CG  force  field  for  a  broad  range  of  applications.  In  particular  it  appears  

(21)

Characterization  of  dense  Microemulsions  Systems  

   

well   suited   to   study   formation   of   micelles,   allowing   simulation   times   long   enough   to   equilibrate  this  kind  of  systems.35,  47-­‐49    

In  this  work,  we  aim  to  investigate  dense  microemulsion  systems  formed  with  dioctyl  

sodium  sulfosuccinate  or  docusate  sodium,  known  as  Na-­‐AOT,  because  of  its  widespread  

use  in  many  applications  and  long  standing  investigation  in  our  group  as  template  for   metal   nanoparticles   synthesis.   This   molecule   has   been   widely   investigated   by   AA   MD   simulations  34,  38,  40,  41,  50  and  more  recently  by  a  few  CG  models.32,  51  

The   goal   of   this   work   is   to   provide   a   Martini   CG   model   for   the   system   water/Na-­‐ AOT/n-­‐heptane,   to   map   out   an   important   part   of   the   ternary   phase   diagram   and   to   compare  the  resulting  structures/morphologies  to  geometrical  models  available  in  the   literature52  and  to  experimental  characterizations  such  as  conductivity  and  small  angle   X-­‐ray   scattering   (SAXS)   data.   First,   Na-­‐AOT   and   n-­‐heptane   bonded   interaction   parameters  are  fine  tuned  in  Martini  according  to  AA  MD  simulations  and   part  of  the   phase   diagram   is   mapped   out   and   compared   to   a   theoretical   model.   Bicontinuity   is   computationally   visualized.   Secondly,   diffusion   coefficients   of   charged   species   are   compared   to   experimental   conductivity   data.   Mean   square   displacements   (MSDs)   of   charged   species   are   used   to   investigate   caging   effects.   Thirdly,   scattering   functions   calculated  from  radial  distribution  functions  of  hydrophilic  species  are  compared  to  SAXS   data.   Finally,   after   back   mapping   equilibrium   structures   to   the   AA   model   of   three   CG   simulations,  further  AA  MD  simulations  are  performed  to  evaluate  effects  due  to  CG  loss   of  detail  compared  to  AA.  

1.2 Methods  

1.2.1 Phase  diagram  calculation  –  The  geometrical  model  

A  phase  diagram  of  the  ternary  system  employed  in  this  study  was  calculated  using  a   simplistic   geometrical   model   developed   by   Andre   et   al.,52   that   predicts   structural   transitions   and   supra-­‐aggregation   processes   which   are   imposed   by   geometrical   constraints.  The  model  is  solely  based  on  a  geometry  of  surfactant  and  related  curvature   of  the  oil-­‐water  interface  and  therefore  requires  calculations  of  the:  (i)  composition  of   the  system,  here  expressed  as  the  water  weight  fraction,𝑤;  (ii)  surfactant  parameter,  s,   which  is  given  by  the  ratio  v/(𝑙!a0)  where  v  is  the  molecular  volume  of  the  surfactant,  𝑙!  

is   the   effective   chain   length   of   the   surfactant   tail,   and   a0   is   the   optimal   head   group  

surface   area;53-­‐55   and   (iii)   packing   parameter,   which   is   the   ratio   between   the   volume   actually   occupied   by   the   cylinders/spheres   and   that   of   the   unit   cells.52   During   all   calculations  it  is  assumed  that  all  the  surfactant  is  located  in  the  oil-­‐water  interface.52   Based   on   the   geometrical   model,   radii   of   spherical,   𝑅!_!,   and   cylindrical,   𝑅!_!,  

aggregates  can  be  deduced  according  to  equations  (1.1)  and  (1.2),  respectively:    

𝑅!_! = 3𝑤𝑠𝑙!    (1.1)   𝑅!_! = 2𝑤𝑠𝑙!    (1.2)    

(22)

Chapter  1  

   

1.2.2 Materials  and  Experimental  Methods  

The   surfactant,   sodium   bis(2-­‐ethylhexyl)   sulfosuccinate,   also   known   as   Na-­‐AOT   (C20H37NaO7S,  99%),  and  the  oil,  n-­‐heptane  (99.9%),  were  purchased  from  Sigma-­‐Aldrich  

BV   and   used   as   received.   Water   produced   by   Milli-­‐Q   Ultra-­‐Pure-­‐Water   purification   system  of  Millipore  BV  was  used  in  all  sample  formulations.  All  preparations  and  analysis   were   carried   out   at   room   temperature   and   atmospheric   pressure.   Surfactant   and   oil   were  mixed  in  the  ratio  2:1  in  weight  and  sonicated  for  one  hour  to  speed  up  dissolution   of  the  surfactant.  Subsequently,  water  was  added  to  the  mixture  of  oil  and  surfactant  in   different  ratio  in  weight.  After  circa  1  hour,  the  microemulsions  were  found  to  be  clear   and   were   considered   homogeneous   and   ready   for   further   experiment   or   analysis.   Conductivity   measurements   were   carried   out   using   a   conductivity   meter   model   712   from  Metrohm  AG.  Small  angle  X-­‐ray  scattering  (SAXS)  was  conducted  using  an  AXS  D8   Discover   instrument   from   Bruker   AG.   Microemulsion   samples   where   filled   in   a   1   mm   thick  quartz  capillary  set  at  a  distance  of  30  cm  from  the  detector.  The  X-­‐ray  source  was   a  tube  operated  at  40  kV  and  40  mA  and  produced  predominantly  copper  Kα  radiation   of   wavelength   0.154   nm.   The   scattering   data   from   the   experiments   were   radially   integrated   obtaining   the   intensity   as   a   function   of   d-­‐spacing   obtained   by   applying   Bragg’s   law.  Dynamic   light   scattering   (DLS)   measurements   were   performed   on   the   Zetasizer  Nano  ZS  from  Malvern  Instruments  Limited  using  the  173°  angle  non-­‐invasive   back-­‐scatter   mode   and   the   M3-­‐phase   analysis   light   scattering   mode,   respectively.   The   instrument   had   a   red   4.0  mW   633  nm   He–Ne   laser.   The   multiple   peak   high-­‐resolution   fitting   procedure   was   used   to   obtain   the   particle   size   distribution   from   the   auto-­‐ correlation  function.    

1.2.3 Computational  Methods  

All  simulations  were  performed  with  the  GROMACS  simulation  package  version  4  56   using  periodic  boundary  conditions  in  all  directions.  

 Coarse-­‐grained  Simulations  

The  CG  Martini  FF  version  2.0  developed  by  Marrink  at  al.46  was  employed  to  model   the  present  system.  This  FF  uses  a  basic  4-­‐to-­‐1  mapping  scheme  of  chemical  functional   groups  to  single  beads.  Beads  are  classified  according  to  their  polarity  as  Q  (charged),  P   (polar),  N  (neutral),  and  C  (apolar).  Na-­‐AOT  was  parameterized  using  8  beads,  a  Qd  bead   with   charge   +1   for   the   hydrated   Na+-­‐ion,   a   Qa   bead   with   charge   -­‐1   for   the   surfactant   sulphonate  anion  head,  2  Na  beads  for  the  ester  groups  and  4  C1  beads  for  the  aliphatic   chains.  The  d  and  a  additions  to  bead  types  denote  hydrogen  bond  donor  and  acceptor   capabilities,  respectively.  N-­‐heptane  was  parameterized  using  2  C1  beads.  Groups  of  4   water  molecules  are  represented  by  one  polar  P4  bead.  The  only  charged  beads  in  this   model  are  the  ones  representing  the  hydrated  Na+-­‐ion  and  the  sulphonate  anion.  Figure  

1-­‐1  shows  the  scheme  for  Na-­‐AOT  and  n-­‐heptane  mapping.  The  bead  types  determine   the   strength   of   the   non-­‐bonded   interactions   according   to   the   interaction   matrix   published  by  Marrink  et  al.46  Non-­‐bonded  interactions  were  modelled  by  shift  functions,   which  cause  the  distance-­‐dependent  potentials  and  forces  to  smoothly  go  to  zero  at  the   cut-­‐off   distance   instead   of   showing   a   discontinuity   there.   A   cut-­‐off   of   1.2   nm   was   employed   for   all   non-­‐bonded   interactions.   The   Lennard-­‐Jones   (LJ)   potential   was  

(23)

Characterization  of  dense  Microemulsions  Systems  

   

smoothly  shifted  to  zero  between  0.9  and  1.2  nm.  A  similar  approach  was  employed  for   the  Coulomb  potential  with  a  relative  permittivity  of  15  and  a  shift  function  from  0  to   1.2  nm.    

CG   systems   were   prepared   by   first   randomly   placing   100   AOT   molecules   in   a   cubic   simulation  box  of  dimensions  x·∙y·∙z  nm;  values  are  specified  for  each  simulation  in  Table   1-­‐2,   Table   1-­‐3,   Table   1-­‐4   and   Table   1-­‐5.   Next,   222   n-­‐heptane   molecules   were   added   randomly  to  the  same  volume,  and  finally,  the  volume  was  filled  with  randomly  placed   ion   and   water   beads.   Each   system   was   energy   minimized   using   the   steepest   descent   method   for   500   steps.   These   systems   were   then   replicated   once   in   each   dimension,   creating   a   simulation   volume   8   times   larger   than   the   initial   set-­‐up.   After   a   short   MD   relaxation   run,   simulations   of   1   µs   were   performed,   allowing   the   system   to   self-­‐ assemble   and   equilibrate.   Analysis   of   morphology,   diffusion,   and   structural   characterization   was   performed   on   the   final   500   ns   of   the   simulation.   All   simulation   times   reported   here   are   unscaled   (see   also   discussion   of   diffusion   results).   The   initial   velocities   were   randomly   assigned   from   a   Maxwell   distribution   at   the   reference   temperature.  The  equations  of  motion  were  integrated  numerically  using  a  20  fs  time   step.  Water,  surfactant  molecules,  ions  and  oil  were  separately  coupled  to  a  Berendsen   thermostat   at   298   K   with   a   common   coupling   time   of   1   ps.57   For   CG   simulations  

containing   10,   15   and   60   %   water,   the   pressure   was   isotropically   controlled   at   1   bar   using   a   Berendsen   barostat   with   a   coupling   time   of   3   ps   with   an   isothermal   compressibility  of  3·∙10-­‐5  bar-­‐1.  For  simulations  containing  10,  25,  30,  35,  40,  45,  50  and   55%   water,   the   pressure   was   anisotropically   controlled   at   1   bar   using   a   Berendsen   barostat  with  a  coupling  time  of  3  ps  and  with  an  isothermal  compressibility  of  3·∙10-­‐5   bar-­‐1  in  x,  y,  z  directions  and  off-­‐diagonal  compressibility  set  to  0  in  order  to  keep  the  

box  rectangular.                           Figure  1-­‐1  The  coarse-­‐grained  model  for  Na-­‐AOT  surfactant  and  n-­‐heptane.  Circles  include  the   atoms  that  are  grouped  into  beads  and  are  coloured  to  indicate  their  nature:  red-­‐Q,  blue-­‐N,  

green-­‐C.  The  numbers  reflect  the  order  in  which  the  model  is  represented  in  the  topology.  Titel van de presentatie 6

Qd Qa Na Na C1 C1 C1 C1 C1 C1

(24)

Chapter  1  

   

Bonded  Parameter  Fine-­‐tuning  Based  on  AA  Simulations  

AA  simulations  (see  below)  were  carried  out  to  gain  more  insight  into  the  atomistic   details  of  the  structure  and  to  assess  how  the  morphology  obtained  at  CG  level  behaves   at   AA   level,   and   initially   also   in   order   to   refine   angle   and   bond   parameters   for   the   bonded  interactions  between  the  beads,  a  procedure  that  is  regularly  used  in  building   Martini  models,  see  e.g.58,  59  We  chose  as  the  reference  composition  the  one  containing  

20%  water,  that  according  to  previous  experimental  studies  gives  rise  to  a  bicontinuous   phase.25   Angle   and   bond   length   distributions   were   calculated   for   a   representative  

sample   of   AOT   and   n-­‐heptane   molecules   after   mapping   the   AA   structures   from   an   equilibrated  100  ns  simulation  to  the  CG  structure.  Mapping  was  done  according  to  the   scheme   shown   in   Figure   1-­‐1,   and   based   on   calculation   of   the   centre   of   mass   of   the   (united)  atoms  constituting  a  CG  bead.  The  same  distributions  were  calculated  for  a  CG   simulation  using  default  Martini  FF  parameter  values,  here  referred  to  as  Standard  CG.  A   number  of  bond  lengths  and  angles  were  found  to  be  significantly  different  between  AA   and  Standard  CG  simulations,  and  these  were  adjusted  in  a  new  topology,  here  referred   to  as  either  Refined  CG  or  CG  model.      

Atomistic  Simulations  

AA   simulations   were   performed   using   a   united-­‐atom   FF,   parameter   files   available   upon  request,  based  on  GROMOS53A6.60  The  SPC  water  model  61  was  used.  All  bonds  

were   constrained   using   the   Lincs  62   algorithm,   while   water   was   treated   as   a   rigid   molecule  using  the  SETTLE  63  algorithm.  A  non-­‐bonded  cut-­‐off  of  1.4  nm  was  used  for  LJ  

and  Coulomb  interactions.  Whereas  the  LJ  potential  employs  a  straight  cut-­‐off,  Coulomb   interactions  were  smoothly  scaled  to  zero  at  the  cut-­‐off  distance  by  using  the  reaction   field  method  due  to  Tironi  et  al.,64  with  a  relative  dielectric  constant  of  62.  Non-­‐bonded   interactions  within  0.9  nm  were  calculated  each  step,  and  interactions  between  0.9  and   1.4  nm  were  calculated  every  10  steps  together  with  an  update  of  the  neighbour  list  and   assumed  constant  in  between  neighbour  list  updates.  A  time-­‐step  of  2  fs  was  used  to   integrate  the  equations  of  motion,  which  were  coupled  to  a  Berendsen  barostat57  with  a   compressibility  of  4.6·∙10-­‐5  bar-­‐1  and  a  coupling  time  of  0.5  ps,  as  well  as  to  a  Berendsen  

thermostat  at  the  reference  temperature  of  298  K  and  a  coupling  time  of  0.1  ps.  Periodic   boundary  conditions  were  used,  either  in  a  cubic  or  rectangular  box,  similar  to  the  CG   set-­‐ups   (see   above).   Water   and   ions   formed   one   temperature   group   separate   from   a   temperature  group  containing  the  AOT  and  n-­‐heptane.    

Back  mapping  Methods  

Resolution   changes   between   AA   and   CG   representations   were   achieved   using   the   methods  due  to  Rzepiela  et  al.,65  which  requires  a  special  version  of  GROMACS,  for  the  

fine-­‐tuning  of  CG  parameters  and  the  more  recent  one  due  to  Wassenaar  et  al.,66  which   is  computationally  more  efficient  and  more  user  friendly,  for  the  diffusion  coefficients   and   morphology   investigations.   AA   structures   were   mapped   to   CG   structures   by   calculating  the  centre  of  mass  of  the  (united)  atoms  assigned  to  their  respective  beads,   according  to  the  scheme  shown  in  Figure  1-­‐1.  Thus,  CG  positions  are  uniquely  defined  in   terms  of  AA  positions.  The  AA  positions  are  not  uniquely  defined  by  the  CG  positions.   Back   mapping   procedures   assign   initial   positions   to   AA   particles   based   on   the   CG   positions,   and   then   try   to   relax   the   initial   structure   to   a   relevant   and   reasonable   AA  

(25)

Characterization  of  dense  Microemulsions  Systems  

   

structure  compliant  with  the  AA  FF.  The  method  due  to  Rzepiela  et  al.  assigns  the  AA   positions  associated  with  a  particular  CG  bead  randomly  within  a  sphere  around  the  CG   bead  position,  and  then  anneals  the  structure,  starting  at  high  temperature  and  with  a   modified   AA   FF   in   which   large   forces   due   to   unfavourable   contacts   are   capped   to   a   maximum   value.   The   method   due   to   Wassenaar   et   al.   allows   for   a   more   controlled   reconstruction   of   AA   positions   based   on   CG   bead   positions   in   which   the   connectivity   between  CG  beads  may  be  used  to  place  AA  particles  already  in  correct  orientations.  In   our   experience,   this   second   method   usually   is   more   stable   and   requires   less   computational   effort   in   obtaining   a   reasonable   starting   structure   for   subsequent   MD   simulations.  In  back  mapping,  we  replaced  a  water  bead  by  four  water  molecules  and  a   Na+  bead  by  a  Na+  ion  and  three  water  molecules.    

 

1.2.4 Analysis  

Morphology  and  Continuity  Investigation  

The   overall   morphology   was   determined   by   visual   inspection   using   the   program   VMD.67  Colouring  the  different  types  of  components  differently,  and  rendering  a  surface   around  the  water  beads  establishes  the  morphology.  The  morphology  was  classified  as   one  of  the  following.  If  the  structure  contains  reverse  micelles  or  interconnected  reverse   micelles  (water  spheres  surrounded  by  surfactant)  the  morphologies  are  denoted  by  RM   and  IRM,  respectively.  Worm-­‐like  and  interconnected  worm  like  structures  are  denoted   W  and  IW,  respectively,  and  bicontinuous  structures  (water  and  oil  are  both  continuous   throughout  the  system)  are  classified  as  BME.  In  case  of  cylinders,  cylinders  hexagonally   packed,  cylinders  of  2  different  sizes  (water  channels  are  continuous  in  one  dimension,   but  otherwise  not  connected),  the  morphologies  are  denoted  C,  HC  and  BC,  respectively.   Lamellar  structures  (water  and  oil  are  both  continuous  in  two  dimensions,  but  stacked  in   a   third)   are   denoted   by   L,   interconnected   lamellar   structures   (water   and   oil   are   both   continuous  in  two  dimensions  and  at  least  one  is  interconnected  in  the  third)  IL.  Finally,   spherical   structures   (large   water   spheres,   RM,   separated   from   each   other   by   a   thin   surfactant   and   oil   layer)   can   be   stacked   in   body-­‐centered   cubic,   BCC,   or   face   centred   cubic,  FCC,  pattern,  and  oil  in  water  micelles  (oil  spheres  surrounded  by  surfactant)  are   denoted  M.  Combinations  of  these  morphologies  are  possible.  While  visual  inspection   using  VMD  provides  some  insight  into  the  morphology  of  the  structure,  the  continuity  of   certain  components  may  be  seen  more  clearly  by  simple  plots  showing  the  beads  in  a   number  of  slices  through  the  simulation  box.  Such  plots  can  also  be  used  to  estimate  the   size  of  compartments  and/or  channels.  Here,  we  represented  the  selected  beads  by  a   circle  with  a  diameter  of  0.5  nm.  The  box  was  divided  in  slices  of  1  nm  thickness,  and   beads  in  different  slices  were  given  a  different  colour.  The  combined  plots  showing  the   slices  in  the  xy,  yz,  and  xz  planes  provide  a  rapid  insight  into  the  connectedness  of  the   component  of  interest.  Continuity  in  x,  y,  z  direction  can  also  investigated  by  plotting  the   probability  profile  to  find  hydrophilic  beads  (surfactant  head  group,  Na+  and  water)  or   hydrophobic  beads  (surfactant  tails  and  n-­‐heptane)  across  a  cell  dimension.  Such  plots   give  a  rapid  idea  of  the  continuity  of  the  two  phases  and  the  dimensions  of  the  domains.    

(26)

Chapter  1  

   

Mean  squared  displacement  and  Diffusion  Coefficient  

The  mean  squared  displacement  (MSD)  was  calculated  by  the  built-­‐in  GROMACS  tool   g_msd  in  order  to  estimate  the  spatial  extent  of  random  motion  for  water  beads,  Na+  

beads,  AOT  group  of  beads  and  n-­‐heptane  group  of  beads.  The  software  calculates  the   average  directional  MSDx,  MSDy  and  MSDz,  according  to  equation  (1.3)  

 

𝑀𝑆𝐷!(𝑡) = 𝑘!!!−  𝑘! !

!,!            (1.3)  

 

where  k=  x,  y,  z,  time  t  is  from  0  up  to  250  ns,  𝜏  is  the  reference  time,  and  sample  size  N   is  100  in  this  work.  The  MSDs  of  individual  particles  are  also  retained.  The  total  MSD  is   the  sum  of  the  contributions  in  different  directions  according  to  (1.4):  

 

𝑀𝑆𝐷(𝑡) = 𝑀𝑆𝐷!(𝑡) + 𝑀𝑆𝐷!(𝑡) + 𝑀𝑆𝐷!(𝑡)      (1.4)    

From   the   total   MSD,   an   average   diffusion   coefficient   is   calculated   from   the   Einstein   relation  (1.5):  

 

𝐷(𝑡) =!"#(!)!!      (1.5)    

The   combined   plots   showing   the   single   MSD   curves   in   direction   x,y,z   provide   a   rapid   insight   into   the   connectedness   of   the   component   of   interest,   discriminating   caging   effects  and  free  diffusion.  Most  of  these  plots  are  shown  in  SI.    

Scattering  Function  

We   wanted   to   calculate   the   SAXS   patterns,   typically   represented   as   scattered   intensity  as  a  function  of  the  magnitude  q  of  the  scattering  vector  Q  expressed  according   to  (1.6):    

 

𝑞 =  !! !"#(!)

!          (1.6)  

 

where  𝜃  is  the  angle  between  the  incident  X-­‐ray  beam  and  the  detector  measuring  the  

scattered   intensity,   I,   and  𝜆  is   the   wavelength   of   the   X-­‐rays.68    Neglecting   inelastic  

scattering,  the  scattered  intensity,  I,  is  proportional  to  the  differential  cross  section,  a   measure   of   the   fraction   of   incident   photons   that   emerges   in   various   directions   and   is   proportional  to  the  sum  of  two  factors  according  to  (1.7):  

 

𝐼 ∝ !"

!! !" ∝ 𝑆! 𝑄 + 𝑆! 𝑄        (1.7)  

where   the   first   term,   𝑆! 𝑄 ,   depends   purely   on   the   scattering   properties   of   the  

Cytaty

Powiązane dokumenty

[r]

Dit onderzoek is erop gericht de kraancyclustijden van bestaande kranen te meten om te kijken in hoeverre deze 8.000 TEU schepen met bestaande terminals kunnen worden behandeld..

повноважень (нормативно-правових актів чи індивідуальних актів), дій чи бездіяльності, крім випадків, коли для розгляду

coli enzymes for acyl transfer and headgroup modifications were produced in a cell-free gene expression system and were co-translationally reconstituted in liposomes.. Acyl-coenzyme

Obok istotnego dla nowożytnej historii społecznej Rzeczypospolitej szlacheckiej zjawiska nadawania cudzoziemcom indygenatów, najpierw na skutek decyzji władcy, później,

Wyróżniającą się pod względem organizacyjnym nauczycielką była także Ewa Ita Schönberg z domu Klekot - kierowniczka szkoły żeńskiej w latach.. 45

Кроме эссе Ворошильского, обращает на себя внимание статья томаса Венцлова, в которой литовский интеллектуал анализирует феномен

Währerd der Versuche fuhr das Modell mit Eigenantrieb; über eine elektrische Rudermaschine konnte es auf den gewünschten Kursen (0 bis etwa 40 mit der See, O bis etwa 40° gegen die