• Nie Znaleziono Wyników

Wave- and ship motion measurements Hr. Ms. Tydeman trials

N/A
N/A
Protected

Academic year: 2021

Share "Wave- and ship motion measurements Hr. Ms. Tydeman trials"

Copied!
104
0
0

Pełen tekst

(1)

TECHNISCHE HOGESCHOOL

DELFT AFDEUNG DER MARITIEME TECHNIEK

LABORATORIUM VOOR SCHEEPSHYDROMECHANICA

WAVE- AND SHIP MOTION MEASUREMENTS

Hr.Ms. "TYDEMAN" TRIALS 1982

Prof.ir. J. Gerritsma

Reportno. :

593

July 1983

\..

Deift University of Technology

Shèp Hydromechanics Laboratory Mekeiweg 2

2628CD DELFT The Netherlands Phone 015 -786882

(2)

i

1. Introduction.

In 1978 two sea trials have been Carried

Hr.Ms. "Tydeman" to measure shiDrnotjons ut with

wave spectra in various sea condit05

one-dimensional

The analysis of these and similar

seatri the necissity to include the

directionai clearly showed

energy for a reliable prediction Of

ship preading of wave

headings [i) .

On only one earlier occast1Ofl5 for all

swell has been met and in this PartjCula a long crested

analysis of heave and titch in head

sea ease the sDectral

reasonable accurate amplitude response

ftflS produced

with model experiments and calculat05

tions as comoared however, sea waves show a considerable

d In general

due to the superposition of several waveti0nal spreading,

their own main direction and wave stems each with

energy

reading.

ortance of such complex sea conditions on the motions of

as described in this report, have ship, the trials

To study the influence and the relative

been Pl ments included the determination of

one- ned. The

experi-nal wave spectra of the encountered sea

two-dimensio-Cç3

corresponding ship motions on various ditions, and the

head.

to the observed main wave directio gs with regard

Heave, oitch, roll, sway and the

vertical

bow of the ship have been measured tion of the

, Using

ring apparatus of the Deift Ship Hydr andard

measu-omech

(DHSL) . For the measurement of heave c5 Laboratory and

vertical dis-placement of the bow accelerometers

, mount

platform have been used. on a stabilized

Three floating wave buoys for the

ion of the

wave spectra have been used: the Deift

buoy

, which only measures the heaving motion of a small f10

the ENDECO buoy, owned by the David

y10in sphere,

aval Research

and Development Centre (DTNSRDC)

and

newly developed by the Datawell COrporatj0 WAVEC buoy, p)

(3)

2

measure the vertical displacement of the wave surface, as well as the wave directions.

All three buoys could be launched from the ship and the measured data were sent to the ship by telemetry systems. After each series of measurements the buoys could be re-covered by the ship.

In this report the results of the wave measurements and the motions of the ship are presented in the form of

wave and motion spectra, as well as wave direction sDectra, as measured by the WAVEC buoy.

Significant values for wave height and ship motions and average periods are given in addition to the spectra. Also for each run (numbered i to 41) the date, the time

(GMT) , the position of the ship, the wave direction (co-ming from, visual estimate) , the true wind speed and direction, the ship's speed and the ship's course are given.

The analysis of the relation between ship motions and sea conditions will be treated in a future report.

In general the prevailing wind- and wave conditions, as met during the trials, were light resulting in very mode-rate sea states and ship motions.

2. The ship.

The main particulars of the ship are given in Table i.

Table i

Length over all

Lengthon the waterline (CWL)

Maximum breadth Draught (CWL)

Weight of displacement (OWL) Maximum speed Service speed 90.15 m 84.50 m 14.40 m 4.75 m 2977 ton 15 knots 12 knots

(4)

3

To give an impression of the lines of the shin the body plan is given in Figure 1.

The ship is equipped with a passive anti-rolling tank, which has been filled only once to investigate its darn-ping action.

3. The experiments.

In Table 2 a summary of the experimental conditions is given for all of the 41 runs carried out in the period from 13 May 1982 to 22 May 1982.

The positions of the ship, corresponding to the runs on each day, as given in Table 2, are shown in Figure 2. The majority of the runs have been carried out with a ship speed of approximately 4 knots, but a limited num-ber of 9 knot runs, with and without water in the anti-rolling tank, have been included.

To investigate the possibility to use the ship as a wave height and wave direction measuring device, emphasis has been given to low ship speeds.

The low speed runs included approximately the following

wave directions with regard to the ships course:

w 30, 60, 90, 120, 150 and 180 degrees for waves approaching from the portside, and corresponding values for

w between 180 and 360 degrees for waves approaching the ship from starboard.

The relative wave direction p is defined in Figure 3.

pw = O + 1800

o

where:

00 _ mean wave direction (coming from)

) - ship's course

I_lw = O corresponds to the following wave condition and pw =

1800 represents the head wave condition

The wave direction "going to", as used in naval

(5)

TABLE 2 00 W c omme n t no shiprnotíons shiprnotions failed run failed run failed run failed run failed Run date position

n w degr. degr. wave direction (visual) degr. relative wave direction degr. wind direction degr. wind velocity rn/sec ship speed knots course of ship degr. start run end run GMT I 13.05 49.52 4.10 210 120 70 7.0 8.0 270 14.30 15.00 2 14.05 50.36 11.16 200 0 175 7.5 4,4 20 14.29 14.59 3 14.05 50.36 11.12 200 270 175 8.0 4.3 110 15.11 15.55 4 14.05 50.35 11.10 200 180 165 7.0 4.2 200 16.00 16.31 5 14.05 50.34 11.13 200 150 160 8.3 3.9 230 16.39 17.09 6 14.05 50.32 11.14 200 120 164 8.3 3.7 260 17.15 17.45 7 14.05 50.33 11.17 200 60 164 7.2 4.2 320 17.52 18.20 8 14.05 50.35 11.18 200 30 170 5.7 4.0 350 18.28 18.57 9 14.05 50.35 11.19 200 182 154 8.5 4.2 198 19.06 19.35 10 15.05 50.36 11.13 180 0 158 9.9 4.0 0 8.20 8.51 11 15.05 50.36 11.13 180 90 169 11.6 4.0 270 9.13 9.15 12 15.05 50.38 11.11 180 90 160 11.7 4.0 270 9.30 10.00 13 15.05 50.38 11.11 175 175 153 11.7 4.0 180 10.06 10.11 14 15.05 50.37 11.13 175 175 153 11.7 3.9 180 10.12 10.42 15 15.05 50.38 11.11 175 325 160 11.2 4.0 30 10.54 10.55 16 15.05 50.38 11.11 175 325 160 11.2 3.8 30 11.00 11.30 17 15.05 50.39 11.10 170 140 160 13.0 3.8 210 12.38 13.08 18 15.05 50.38 11.12 170 110 160 13.0 4.0 240 13.13 13.16 19 15.05 50.38 11.12 170 110 160 13.0 4.0 240 13.20 13.50 20 15.05 50.38 11.12 170 289 178 12.0 4.0 61 13.56 14.26 21 15.05 50.37 11.11 165 182 165 13.0 9.2 163 15.53 16.23

(6)

TABLE 2 CONTINUED

e

lj)

o w

Run date position wave relative wind wind ship course start end

n w direction wave direction velocity speed of ship run run

(visual) direction

degr. degr.. degr. degr. degr. rn/sec knots degr. GMT

comment 165 165 200 200 200 200 200 330 330 330 330 330 330 330 240 260 50 o 9.3 8.6 11.2 9.0 8.8 1.0 11.0 4.0 4.2 4.1 4.0 4.0 4.4 4.2 s.o .5 1.4 .0 winddir.170-260 anti-r tank empty anti-r tank empty anti-r tank full

run failed no shipmotions no shiprnotions

no shipmotions

no shipmotions run failed 45 168 13.5 135 220 10.0 135 200 8.5 330 208 7.5 330 215 6.5 330 215 6.5 298 305 4.3 0 150 11.8 180 140 9.0 150 142 12.5 30 150 13.5 270 150 13.5 300 180 10.6 120 195 10.0 180 210 8.8 210 195 1.4 237 55 12.5 180 357 7.0 24 15.05 50.42 11.06 25 15.05 50.42 11.11 26 16.05 50.30 14.43 27 16.05 50.31 14.43 28 16.05 50.34 14.31 29 16.05 50.36 14.23 30 17.05 46.55 15.53 31 18.05 45.21 20.51 32 18.05 45.22 20.52 33 18.05 45.24 20.54 34 18.05 45.24 20.53 35 18.05 45.22 20.55 36 18.05 45.21 20.55 37 18.05 45.21 20.55 38 19.05 41.24 20.13 39 20.05 37.30 20.34 40 21.05 32.40 20.40 41 22.05 30.25 19.17 300 17.38 18.08 210 18.13 18.43 245 9.12 9.42 50 9.54 10.34 50 11.31 12.03 50 13.13 13.15 82 7.48 8.18 150 7.55 8.25 330 8.30 9.00 0 9.22 9.52 120 9.59 10.29 240 10.58 11.28 210 12.12 12.42 30 12.50 13.40 240 12.39 13.37 230 2.42 13.12 353 12.49 13.19 0 10.50 .00

(7)

4. The wave buoys.

The Delft wave buoy has been developed by the Ship Hydro-mechanics Laboratory to measure waves in a frequency

range which is of interest for ship motions in service conditions. The buoy is stabilized to keep an almost vertical position in waves by means of a tripod and a stabilizing weight of 130 N attached to a thin steel wire of approximately 50 meters. The diameter of the

fibreglass floating sphere is 40 cm and the total weight including the stabilizing weight is approximately 260 N,

see Figure 5.

6

direction (coming from) as used in nautical science. The values, as given in Table 2 should be considered

as rough estimates, because they are based on visu1

estimates of the mean wave direction.

The three wave buoys were dropped in advance of each series of runs. Two typical manoeuvres, carried out t.o cover the desired range of relative wave directions and to keep the ship as much as possible in the vicinity of the buoys are given in the Figures 4a and 4b.

Estimated values of the draughts forward and aft, based on the values at the date of departure and the use of fuel and fresh water are given in Table 3.

Table 3 Tv TA A (t) Date 1982 (ni) (m) 11.05 4.70 4.80 2977 13.05 4.13 4.91 2765 14.05 4.13 4.91 2765 15.05 4.11 4.95 2770 16.05 4.11 4.95 2774 17.05 4.12 4.95 2780 18.05 4.13 4.95 2787 19.05 4.13 4.95 2787

(8)

7

surface, which is telemetered to the ship by a FM trans-mitter, using batteries for energy supply. In low fre-quency waves ( W < 0.4 rad/s) the stabilization of the

buoy is not sufficient and an erronous estimate of the spectral density in this frequency range may occur. The acceleration signal is integrated twice outside the buoy to obtain the vertical displacement.

The ENDECO buoy, manufactured by the Environmental Devices Corp, U.S., provides a means to measure wave elevation as well as wave direction, using a so called "wave orbital

following buoy". The pitch, roll, composs and accelero-meter instrumentation is located in a submerged watertight case, whereas the powersupply and the electronics are in

a spherical surface buoy with a diameter of 75 cm. The total weight of this buoy is approximately 760 N. The de-signed bandpass of the buoy is 0.2 - 3.1 rad/s.

Figure 6 gives a general plan of the buoy and a sketch to show the orbital following motion in waves. The manufac-turer claimes a fabourable response in breaking waves, as opposed to slope following buoys

[31

The WAVEC buoy has been developed and manufactured by DATAWELL, The Netherlands, to measure the directionality of sea waves.

The WAVEC buoy has a toroid hull made of fibre glass and filled with closed cell polyurethane foam. The external diameter is 2.5 meter (see Figure 7). The electronic equipment is housed in a cylinder of 70 cm height. The main sensor (a so called Hippy-120A) measures the

verti-cal displacement, the pitching and the rolling motions of this slope following buoy. A gravity stabilized platform with a natural period of 120 s, inside the buoy, provides

a reference for the measurement of the vertical and angu-lar displacements. A three dimensional flux gate meter is used to measure the orientation of the hull relative to magnetic north. The vertical displacement or heave signal

is determined by double integrating the vertical

accele-3;

(9)

i

-e-Also in this case the measured signals are telemetred to the ship for data reduction [4]

5. Wave- and shipmotion recordings.

The wave- and shipmotion recordings have been used to

estimate the corresponding power spectral estimates accor-ding to the Blackman and Tuckey method [5]

The determination of the wave directional spectra has been carried out by the Department of Hydro-Instrumentation,

Ministry of Public Work. Before digitizing the analog recor-dings an anti-aliasing filter has been used to minimize

aliasing effects. Digitizing has been done with i second intervals and the discrete signal is led through a digital band pass filter to remove DC offset and slow drift pheno-mena. The filter limits the frequency range between

w= 0.2 and w = 1.8 rad/s. Filtering is done in the time

domain by convolution of the input signal with the impuls-response of the filter. After filtering the signal can be integrated (in the case of accelerations) or the signal is used to calculate an estimate of the autocorrelation

func-tion. In the latter case 37 shifts of i second have been used for a total recording length of 1680 s (28 minutes) Integration is done using a numerical method and after integration the signal is filtered again to remove the integration constant.

From the determined auto correlation function the power spectral density estimates are determined in the usual way. Finally the raw spectrum is smoothed by averaging adjacent points of the "raw" spectrum. The procedure is equivalent to multiplying the auto correlation function estimate with a "Hanning" window prior to transformation.

The heave recording of the WAVEC buoy has been digitized with 0.781 s intervals and for the estimate of the auto-correlation function 37 shifts of 0.781 s have been used

for a total recording length of 30 minutes.

(10)

in the Figures 8 - 26. A summary of the corresponding sig-nificant wave heights and mean periods is given in Table 4. The significant wave height and the mean period are taken

as:

OD H113 = 4

= 2

m/m1

, where m

= f

s

(w) dw) and

m1 =

0f

wS(w)dw.

The wave period where S (w) attains a maximum value is denoted by T

p

In the Figures 27 - 53 the motion amplitude spectra of

heave (z) , pitch (0) , vertical displacement of the forward perpendicular (zF) rolling (q) and sway (y) are given, as well as the corresponding average one third highest

ampli-tudes (indicated in the Figures by % ).

In Table 5 the significant amplitudes of the shipmotions and the mean periods are summarized.

In more than half of the cases, the Delft buoy spectra show larger spectral densities for low frequencies

(w < 0.4 rad/s) than the other buoys.

This is probably due to parasitic effects of the stabilizing system of the Delft buoy. In a few cases the ENDECO buoy shows the same tendency, when compared with the WAVEC buoy

(see for instance run 23, 24, 32, 37)

If the WAVEC is taken as a reference the Delft buoy over-estimates the significant wave height in 21 of 35 runs, the r.m.s. value of the differences of all runs being approximately 8%.

The ENDECO buoy gives lower values in 22 of 35 runs as compared with the WAVEC, the r.m.s. value of the differen-ces being approximately 11%.

6. Wave direction analysis of the WAVEC data.

The data reduction of the WAVEC buoy has been carried out by the Department of Hydro-Instrumentation of the

(11)

TABLE 4 Run

nr.

H1/3m DELFT T1

sec

H1/3 rn ENDE CO T1

sec

Hl /3 m WAVE C T1

sec

1.37

8.56

I .80 7.32 1 .46 7.71 2 1.45 7.17 1 .36 6.49 I .49

6.45

3 1.42

6.98

I .41

6.38

I .41

6.22

4 1.31

694

1.29 6 .44 I .43 6 .36 5 1.25

7.18

I. 35 6 .55 I .33

6.22

6 1.30 7.01 I .17

6.37

I .39

6.48

7 1.30 7.46 I .22

6.64

1 . 30

6.35

8 1.14 7.15 I .14

6.34

1 .32

6.36

9 1.19 7.10 I . 15

6.30

I .07

6.33

lo 1.72 7.55 I .54

5.97

1 .62

6.02

Il

.00 .00 .00 .00 .00 .00 12 1.76

6.87

1 .54

6.34

I .90 6.21 13 .00 .00 .00 .00 .00 .00 14 1.82 7.00 1 .66 6.11 I .93 6.26 15 .00 .00 .00 .00 .00 .00 16

2.12

7.31 I .85 6 . 35 2.02 6.32 17

2.36

7.68 I .96

6.47

2 .25 6 .45 18 .00 .00 .00 .00 .00 .00 19

2.48

8.30

2.23

6.45

2.01

6.57

20

2.37

7.64

2.17

6.52

2.26

6 .65

2.62

7.64 2.09

6.78

2.54

6.87

(12)

TABLE 4 CONTINUED

DELFT ENDECO WAVEC

Run H1/3 T1 H1/3 T H1/3 T

nr.

In

sec

sec

sec

23

2.80

7.71

2.83

7.53

2.75

6.81 24 2.86

8.08

4.00

6.89

2.56

7.02 25

2.58

7.69 2.32 7.11

2.42

7.02 26 1.89 7.66 1.91 7.23 1.82 7.36 27

2.26

9.03

1.73 6.95 1.98 7.03 28 1.89 7.77 1.67 7.18 1.82 6.91 29 .00 .00 .00 .00 .00 .00 30 1.68 7.83 1.48 7.46 1.70 7.71 31 1.89 7.96 1.77 7.47 1.73 6.66 32 1.71 7.68 1.80 8.10 1.93 6.76 33 1.84 7.72 1.73

6.57

1.77

6.37

34

2.17

7.65 1.76 6.04 1.96 6.41 35 2.19 7.68

2.00

6.56

1.98

6.12

36

2.18

7.99 1.83 6.25 1.87

6.29

37 2.21 7.97 2.29 7.22 1.91

6.23

38 1.49

6.83

1.41 6.21 1.60

6.46

39 .97 7.39 1.03 7.31 1.00 7.23 40

2.17

7.13 1.98

6.32

2.14

6.44

41 .00 .00 .00 .00 .00 .00

(13)

TABLE 5 Run nr. relative wavedir. 1w degr. heave ampl. 1/3 m T I sec pitch ampl.1/3 degr. T I sec roll ampl.1/3 degr. T I sec sway ampl.1/3 m T1 sec vert.disp.bow ampl.1/3 T I m sec 1 120 .00 .00 Qo .00 .00 .00 .00 .00 .00 .00 2 0 35 979 1.58 8.30 2.08 11.12 .25 10.36 .73 9.46 3 270 .53 7.72 1.54 7.29 1.46 10.51 .36 8.75 .85 7.17 4 180 00 .00 .00 .00 .00 .00 .00 .00 .00 .00 5 150 .36 7.56 1.68 6.36 .74 9.46 .15 9.03 .94 6.83 6 120 .43 7.25 1.69 6.43 .77 9.12 .22 8.28 .97 6.91 7 60 .47 7.52 1.51 6.60 1.22 9.53 .32 9.09 .84 7.17 8 30 .41 7.81 1.45 7.12 1.33 10.14 .29 9.29 .67 7.62 9 182 .39 7.69 1.55 6.18 .97 10.06 .22 9.46 .88 6.75 10 0 .53 7.60 1.56 6.93 1.20 9.42 .36 8.62 .82 7.61 11 90 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 12 90 .43 6.64 1.80 6.30 .70 9.88 .20 8.41 1.23 6.62 13 175 .00 jj .00 .00 .00 .00 .00 .00 .00 .00 14 175 .71 7.31 1.73 6.03 1.33 9.26 .44 8.41 1.15 6.76 15 325 .00 .00 .00 .00 .00 oo .00 .00 .00 .00 16 325 .47 8.41 1.85 8.02 1.61 9.75 .31 9.63 .95 8.72 17 140 .66 734 2.27 6.39 1.22

933

.30 8.62 1.53 6.84 18 110 .00 oo .00 .00 .00 .00 .00 .00 .00 .00 19 110 .67 6.76 2.58 6.39 1.18 10.41 .24 7.65 1.87 6.72 20 289 .51 7.93 2.08 8.03 1.91 10.60 .31 9.50 1.18 8.69 21 182 1.11 7.99 2.02 6.01 3.77 10.76 .82 10.31 1.64 7.27

(14)

TABLE 5 CONTINUED Run nr. relative wavedir. 'J w degr. heave ampl.1/3 m T1 sec pitch ampl.1/3 degr. i1 sec roll ampl.1/3 degr. 24 45 .88 7.03 2.41 6.43 2.22 25 135 .85 7.27 2.61 5.91 2.10 26 135 .74 6.71 2.06 5.98 1.22 27 330 .63 9.46 1.52 8.99 3.28 28 330 .64 9.92 1.66 9.20 1.52 29 330 .00 .00 .00 .00 .00 30 298 .00 .00 .00 .00 .00 31 0 .46 9.48 1.79 9.41 1.79 32 180 .62 7.92 2.28 7.30 .86 33 150 .53 7.89 1.86 7.25 1.00 34 30 .49 8.54 1.75 7.84 1.51 35 270 .78 6.99 1.75 5.78 1.70 36 300 .65 7.77 1.68 5.86 1.63 37 120 .55 7.62 1.77 6.97 1.28 38 180 .00 .00 .00 .00 .00 39 210 .00 .00 .00 .00 .00 40 237 .00 .00 .00 .00 .00 41 180 .00 .00 .00 .00 .00 vert.disp.bow ampl.1/3 T1 m sec sec sway ampl.1/3 m T1 sec 10.05 .48 8.57 1.70 6.90 10.65 .44 9.90 1.85 6.36 9.72 .30 7.92 1.46 6.07 10.77 .52 10.32 .93 9.08 9.85 .48 10.41 1.03 9.38 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 10.84 .26 9.26 .91 9.16 10.07 .20 8.41 1.51 7.42 9.18 .26 8.28 1.11 7.39 10.37 .29 8.94 .97 8.01 9.62 .50 7.86 1.25 6.15 9.94 .41 8.79 1.22 6.42 8.89 .32 8.17 1.11 7.30 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00

(15)

)

-

14

-buoy provides the -buoy heave spectrum S (f) as well as an estimate of the directional spreading function Df(0) where f denotes frequency in Hz. The directional

sprea-ding function is defined by: Df(0) = S(f,O)/S(f) , where S(f,O) is the two dimensional wave spectrum and O is

wave direction. The first four Fourier coefficients of Df(0) have been determined from the buoy signals and averaged in frequency bands of 0,05 Hz width. A descrip-tion of the analysis of the WAVEC buoy data is given in

[4)

The results of the analysis are given in the Figures 54 - 87 which include the following information per frequency band of 0,05 Hz:

mean wave direction: O = r ü D(0)dO

o J o 2'n speading: e (O - O )2 D(0)dO J ½ o [J o i o

Also the mean values of these quantities for the total considered frequency range (f1 - f2) are given, where:

Th.O =

fl-f2

I o (f)df

fJ O

f2 f2

SObh =

J

G (f)S(f)df/

f

S(f)df

i i

In addition the significant wave height ( H1 ) and the

average wave period ( 2 m0/m1) are give in the Figures, as well as the indication whether the one di-mensional spectrum is uni- or bimodal (respectively

UB = U, UB = B).

In the analysis of the buoy data fast Fourier transform (FFT) procedures have been used to compute estimates of power spectral density functions.

This may be a reason why the computed. significant wave heights in the Figures 54 to 87 differ from those in

(16)

i)

-

15

-were obtained with the Blackman - Tuckey method. The FFT values differ by approximately 6% r.m.s.

The average wave periods T (= T1) as given in the Figures

8 to 26 are much lower, but this is caused by the dif fe-rent frequency range (f = 0.05 - 0.5 Hz, or

w = 0.3 - 3.1 rad/s) as compared with the other analysis (w = 0.2 - 1.8 rad/s).

The differences are relatively large and in view of the relative unirnportancy of the high frequency part of wave spectra for shipmotions the definition of the "average" wave period should be carefully considered.

There is a reasonable correlation between the visual estimated wave direction (see Table 2 ) and the measured

average wind direction on the one hand and the mean wave direction as derived with. the WAVEC buoy on the other hand. It should be taken into account that the visual estimation of the wave direction is not very accurate.

7. Future work.

The directional spectra of the ENDECO buoy will be deter-mined by DTNSRDC, Washington, to complete the comparison with the WAVEC buoy.

The motions of Hr.Ms. Tydeman in the two dimensional spectra, as measured with the WAVEC buoy, will be calcu-lated, using the DSHL six degrees of freedom shipmotion program.

Also

model tests in regular waves at very low forward speed will be carried out, covering seven headings with regard to the wave direction and a number of wave lengths, to compare with the calculated values.

Finally, the possibility to estimate wave conditions

(wave height and wave direction) from measured ship motions, using known ship frequency responses will be investigated.

(17)

16

-Acknowledgement.

The "Tydeman" trials could only be carried out through the close cooperation of the following institutes, companies and persons.

This cooperation has been very succesful and is gratefully acknowledged.

- Dr.ir. J.M. Dirkzwager, Ministerie van Defensie, coordinator of the trials

- Captain A.P.H.M. Lempers, the officers and crew of

Hr.Ms . "Tydeman"

- Mrs. S.L. Bales, David W. Taylor Naval Ship Research and Development Center, Bethesda, U.S., ENDECO buoy and

instrumentation

- Mr. P.L. Gerritzen, Datawell b.v., Haarlem, The Netherlands, WAVEC buoy and instrumentation

- Mr. M. Buitenhek, Mr. J. Ooms, Mr. A. Versluis, Deift Ship Hyd.romechanics Laboratory,

Delft wave buoy, shipmotion measurement and data reduction - Mr. A.J.M. van der Vlugt, Hydro-Instrumentation

Depart-ment, Rijkswaterstaat, The Netherlands,

wave frequency spectrum and directional spreading function WAVEC buoy data.

(18)

17

-References.

[ i] Gerritsma, J.,

"Results of Recent Full Scale Seakeeping Trials't, International Shipbuilding Progress, 1980.

Gerritsma, J., W.E. Smith,

"Full Scale Destroyer Motion Measurements", Journal of Ship Research, March 1967.

Brainard, E.C.,

"Wave Orbital Following Buoy",

MTS Conference, Washington DC, October 1980.

[ 4) Vlugt, A.J.M. van der, A.J. Kuik and L.H. Holthuijsen,

"The WAVEC directional buoy under development", Symposium Directional Wave Spectra Application, Berkeley, September 1981.

[ 5] Blackman, R.B. and J.W. Tuckey,

"The Measurement of power spectra", Dover Publications Inc., New York.

(19)

2m

(20)

)

3Q0 19-05 20° 19 --. 21-0 22-05 I 0° 0°

Figure 2. Positions of trials.

(21)

o

s

LI = o + 180°

-w o

Figure 3. Definition of wave äfrection with egard to the ship.

(22)

21

-launching of buoys

3Q0

direction of predominant waves

Figure 4a. Typical seakeeping manoeuvre V 4 knots.

direction of predominant waves

3Q0

(23)

22

-0.1 rn

p'

(24)

O

(

(25)

o

0.5

w

1.0 1.5

rad/s

2.0

0.8

0.8

-D fo 1

0.6

CNLI)

0.6

E

A

0.2

0.2

o O O

0.5

w

1.0

i .5

0"-

rod/s

2.0

RUN i H13 m T Sec T

sec

D 1.37 8.56 9.85 w 1h6 7.71 9.85 E 180 7.32 9.85 1H E :' D . II 1 II .1 II W it/ I 't I I I Il i i, t \

i

\\

\

't\ \_ H13 m T sec

sec

T, D w E 01.

0].

(J,

(26)

o

0.5

w

1.0 1.5

rad/s

2.0 O

0.5

w

1.0 1.5 p..

rad/s

2.0

RUN2 H413 m T sec 1p sec D 145 7.17 7.10 w 1.36 6.49 7.53 E 149

6/5

6.7L 't W

nk

!"\

I D í/

\

::r

J. E

\-/\

!

!

RUN3 H113 m T Sec T Sec D 1.42 6.98 7.10 w 14O 6.22 6.10 E 141 6.38 7.10 E /kYL

/\\

--1

. D .- . ,

'-\

i .-s.

0.8

0.8

-o

fo L.

0.6

Ç%JLfl

0.6

E A 0.4 0.14

u,

0.2

0.2

o

(27)

o

0.5

w

1.0 1.5

rad/s

2.0

o].

0.2

0.1$

0.2

o

O

0.5

w

1.0

i .5

- rad/s

2.0

RUNL ft!3 m 1

sec

sec1p -D 1.31

6.94 7.50

w 143

36 6J4

E 129 6./1. 7.11 ,, w E

RUN5

H13 m T1 sec T Sec D 1.25 7.18 7.10 w 1.33 6.22 7.12 E 1.35 6.55 6.73 II W

¡\\

E //lI

\

D

0.8

o.e

J

0.6

CN

0.6

E

(28)

o

0.5

w

1.0 1.5

rad/s

2.0

0.8

0.8

-o

0.6

0.5

E

A O

0.5

w

1.0 1.5

buI.- rad/s

2.0

RUN 6 . m 1 Sec Tp Sec D 1.30 7.01 7.10 w

1.39 648 7.53

E 117 6.37 7.53 I'

i /

'\

/ \

./

. 1f" I I. II II I,! I \ '.' ,I D \ ,

\

.-. -,.' . -N.T_\ E ',

il

II 'r' RUN 7 H13 m 1 Sec T Sec D 1.30 7.46 7.10 w 1.30 6.35 7.53 E 122 6.6i 7.11 D . .

!

\//

\. w

'E

0.2

0.2

0.1. 0.1.

(29)

o

0.5

1.0 1.5

rad/s

o

2.0

0.8

0.8

0.6

0.5

E

01.

0.2

0.1.

0.2

o

0.5

w

1.0 1.5

ø.- rad/s

2.0

RUN8

H413 m T Sec lp Sec -D 1.14 7.15 6.40 w 1.32 6.36 6.71. E 114 6.34 7.11 I 'O

/V

D

/\

t

/I I' 'I I ,

/

E' RUN9 '/3 m Sec Sec D 1.19 7.10 10.67 w 1.07 6.33 7.12 E 1.15 6.30 6.73 I' 1'

//\

I I

..

E\

II//II,.

j

\/

i

(30)

0.8

0.8

0.6

0.6

E A RUN 10 ft!3 m T1 sec Tp sec D

1.72 7.55 6.73

w 1.62 6.02 6.71. E 1.54 5.97 6.40

¡\\

I'

I'

''w

I t ,,, , -j'

i

\

,/./

.

\

\,./

-,,--/

\'<'><. \ RUN 12 ft/3 m T1 Sec T Sec D 1.76 6.87 8.00 w 1.90 6.21 7.53 E 1.54 6.34 61.0 I I.

I

i;I

w U

\''.\

¡/\\

i'

J

'. O O O

0.5

w

0.2

0.2

1.0 1.5

2.0

- rad/s

o

0.5

1.0 1.5

2.0

w

rod/s

01. 0.1.

(31)

o

0.5

w

1.0 '1.5

rad/s

2.0

0.8

0.8

-D

(t

I-0.6

(NU)

0.6

E

A O O

0.5

w

1.0

i .5

0"-

rad/s

2.0

RUN14 .n/3 m

Ï

sec 1p

sec

D

1.82 7.00 8.00

w 1.93

6.26 7.53

E 1.66 6.11 673 ¡/"\ \ II. t

,,//

. /N. RUN 16 . I\ i \ H,3 m T. Sec T sec D 2.12 7.31

8.00

w

2.02 6.32 7.53

E 1.85

6.35 7.53

¡\

o-w

I:

ii ii ',I,! I, \ \

\ \'\.

,

./\\/

\

'

/1

i/I

I

\/'.

,r -'

_\

\\

\S

\.

'\ \ \_

0.2

0.2

0.1.

0.4

(32)

o

0.5

w

1.0 1.5 .-

rad/s

2.0

-D

0.6

0.6

E

A 0.4

0.2

O 0.1.

0.2

O O

0.5

w

mp.- rod/s

L.) ft!3 m T sec Tp sec RUN 17 . D

2.36 7.68 8.00

w 2.25 61.5 7.12 E 1.96 6J7 8.51. I' ' I I t I t I /\

('/

\

\

;!

1v

!P\

\

\\\

\

i \ t \ i; t, E\t ' .t \ I I . 1 ' :N H413 m T1 Sec T Sec

RUN/9

D

2.48 8.30 8.00

g w

2.23 645 8.00

!

itt I E 2.01 6.57 8.00 :

lit

: II I . . t t I t t t I W

9-\ . D t t t t t t t t f 1 \

¡\. \

t . I t t

\\

\ t t #\ . \ jI ' :i 1 ,'

\/\

\

\i

j

\I

\J

' N --.I , N .

\

1.0 i .5

2.0

0.8

0.8

(33)

o

0.5

w

1.0 1.5

rad/s

2.0

0.8

0.8

-a

0.6

c'

Q5

E A O O

0.5

w

i .0 1.5

NI..- rad/s

2.0

RUN 21 .

/\

! , I-f473 m sec ip sec D 2.62 7.64 8.54 w 2.5/. 6.87 8.50 E 2.09 6.78 10.67

;/

\'

¡ï

î'

\

E

\\

, ¡/\

/I_},I

RUN22

r

i l )-L13 m T Sec T Sec D 2.65 7.91 8.54 w

2.38 6.87 8.00

E 2.38 7.14 8.00 ./

i!

It I

:!

j'

W

./\

i Q-. i

l\/

. \ \f\i

/\

!

il

\/l

/1 t \V i .4. , I i I/i

Ji!,,,,'

\

\.

\'\--'

0.2

0.2

0.4 0.1.

(34)

o. e o.2 o

33

-RUN23 I \ I H t I I I

I'

I I . I i I , -H4,1 m T Se( T Sec D 2.80 7.71 8.54 A' 2.75 6.81 8.00 E 2.83 7.53 8.00

'I

iI

I

il

I'

1' Dt E w \ \ I \ \ I I I

J

i'

\\f

,,l!

\.

"

\

..-.

-o n, o.6 E A

Ui.

o

0.5 i .0 i .5

2.0

w

I- rod/s

(35)

A 0.8 0.1. O

-

34

-/

Figure 1

.

!t

il

. \ Tr

I

::: ::: :

¿.QQ 6.89 9.15 (J) 0.2 O 0.5 i .0 i .5

2.0

w

- rod/s

(36)

w

0.8

0.8

-'J (o

0.6

(%4Lfl

0.6

E A 0.4

0.2

U)

0h

0.2

o

0.5

w

1.0 1.5

p- rod/s

2.0

RUN 26 H13 m T Sec T, Sec D 1.89 7.66 9.85 w

i.gi

7.23 9.15 , E 1.82 7.36 9.85

i'T:

i

//\

Ii 'l

i

. . RUN25 -/ ,ì\

I

\

:

, H4/3 m t-sec 1p Sec D

2.58 7.69 7.53

w

242 7.02 9.15

E 2.32 7.11 8.00

i\\/

!\L.

.I \

\\

,A' \, . E \

ti

i

\

i

\\

4 II

¡!

Il"

I,\

\:

o

0.5

1.0 1.5

2.0

rad/s

(37)

Figure 20

0.8

Oi

0.2

o RUN27 .

\.

.\

--D Ht;3 m TL sec Tp sec 9.85 2.26 9.03 E t73 7.0319.85 6.951 9.15 i 1,

!

\ I;.

ITY:L

.1 \ i \ i \ i

\\

II' 1ì/ i!

!\

. o 0.5 1.0 1.5 2.0

w

rad/s

(38)

o

0.5

w

1.0 1.5

1I.. rod/s

2.0

0.8

0.8

-o

ro

0.6

0.6

E A o

o

0.5

w

1.0 1.5

buI.. rad/s

2.0

RUN 30 H413 m T1 Sec T Sec D

1.68 7.83 9.85

w 1.70 7.71 9.85 E

1Â8 7.6 9.85

t

t

It t . t'

ti,

w I. i ti t. II t, lIt t, t

E\

t 't 4f

I

/1' -.

-I3/

t RUN 28 . !\ ft!3 m 1t sec 1p sec D 1.89 7.77 9.85 w 1.82 6.91 9.15 E 1.69 7.18 915

(

. E /!' .: I ' i i \\

t\

(

/

'

/

II I:'

./\//

(\/

, .' " -,,

'i\_

. -N-

::

..--.:

0.2

0.2

0.1. 0.1.

(39)

o

0.5

w

1.0 1.5

rad/s

2.0

o

0.5

w

i .0 1.5

v.p.. rad/s

2.0

RUN 32 1 i i i \ H413 m T, Sec T Sec D 1.71 7.68 8.54

i w

1.93 6.76 9.15 E 1.80 8.10 9.15 A I

I

I\

\

'D

.

}i1\.//1

RUN 31 . . D I1(/3 m

Î

sec

Sec D 1.89 7.96 9.85

w

1.73 6.66 9.85 E 1.77 7Á7 9.15 \G E W /i//

\\

Ii

i

¡/\\

)'

2:'

'

0.8

0.8

-o

ro L.

0.6

CN

0.6

E A 0.1. 0.1.

u,

0.2

0.2

o O

(40)

o

0.5

w

1.0 1.5

rad/s

2.0

0.8

0.8

O

0.5

w

i .0 1.5 DI...

rod/s

2.0

RUN 34 I /\ H43 m T Sec T

sec

D 2.17 7.65 9.85 w 1.96 641 9.15 E 1.76 4.90 9.15

!D

¡ ¡I

\

7\\

""j

RUN 33 F-1413 m

sec

1p Sec D 1.84 7.72 9.15 w 1.77 6.37 9.15 E 1 73 6.57 9.15 I \

./\

\\\

\\

E : '

".I/

-Q f0

0.6

CNtfl

0.6

E A 0.4

0.4

U)

0.2

0.2

(41)

o

0.5

w

1.0 1.5

radis

2.0

0.1.

0.2

A

0./.

0.2

o

0.5

w

1.0 1.5

apI- rad/s

2.0

RUN 35 l-34/3 m f1 Sec Tp Sec D 2.19 7.68 9.15 w 1.98 6.12 9.15 E 2.00 6.56 9.15 i\ E !_p_ w

!\:

':

i

\ 1

/N1\

\\

1

/I

k:, :'

4\

il

\.

.'I

\\\

.- --. RUN 36 H13 m T1 Sec T sec D 2.18 7.99 5.82 w 1.89 6.29 9.15 E 1.83 6.25 5.57

i'

-'. I il I ¿I I. \ i

I,

!;

[i

' E

\

\.

r

Ii

//

/.,,//

I

\

\

!

i'

\/

.-.

0.8

0.8

-o

ro

0.6

cNt1)

0.6

E

(42)

o

0.5

w

1.0 1.5 .

rad/s

2.0

o

0.5

w

i .0 i .5 .-

rad/s

2.0

RUN38 H13 m T1 Sec T

sec

D 1.49 6.83 9.15 w 1.60 6.46 8.54 E 141 6.21 915 I'

I'

( I I I A /1 / /N.

/

a:'4

\.

A 1 I I" ¡I II I \

\

'\ \\ '--.-- S S

RUN37

. H113 m 1-sec Tp sec D 2.21 7.97 5.82 w 1.91 6.23 6.10 E 2.29 7.22 9.15 o

./

E iii

'N

i . S

I

'7

0.8

0.8

-o

0.6

t1)

0.6

E A

01.

0.4

:

u,

0.2

0.2

(43)

o

0.5

w

1.0 1.5

rad/s

2.0

0.5

w

i .0 i .5

rod/s

2.0

RUN 39 H413 m T sec 1p sec D 0.97 7.39 8.54 w 1.00 7.23 8.51. E 103 7.31 9.10 -

-.-l.!-

-:::_

,, RUN1.0 Il H 1I I fl I I II I H413 m T, sec T Sec D 2.17 7.13 7.53 w 2.1/. 644 8.00 E 198 6.32 7.50 I I I I I I I ' i 'I I il I f I I I ¡ i, t I ¡

,'E

II 'I il I; I/ , I/ t. I I ¡ t t

1\t

/.\\

\

A , _p_/ N i fr I

0.8

0.8

-D ro

t-0.6

0.6

E A 0.4 0.1.

3

u,

0.2

0.2

o o

(44)

2.5- 5 L w NJ 1.0-0.5-rn o

t

L-I, 2-o 1.0 (..J. E 0.8 -t, t,

k

L-fl NJ LI, o. o. o 0.5- 25 L o_ o RUN2

i;

sec. z 035m 9.787

- .

o

L58°8.299 ZF 073m 9.46 II I, .

¡\

I

i

\ ' \ \ RUN2 -T1 sec. 2.08° 11.12

-y 0.25m 10.36 I

Ij

II

I'

\ We rad/s We rad/s O 0.5 1.0 i .5 o o. s 1.0 i .5 0.4--Dt, C-LI) E Li) > L) 0.2 0. 1 -i .0 5

(45)

25- 2.0-ci

i

LL N.J 1.0- 05-0_ s cD L') 2-0.8 cl I) ('-J. E

t

1.0 Lfl NJ L') 0.4 0.2 0_ O 0.5- 2 0.4 -D cl

k

tJ) (N E 0. 1 - O-20 ci

k

L. D, ci

i

I .0 5 O o RUN3

i;

sec. z 053m 7.79 e 1.54.°7.285 ZF O.85m7.17 RUN3 sec. . 1.46° 10.51 y 0.36m8.75 1\ I

,,J_,J//''\\_

O. 5 1.0 1.5 We r a d /s O 0.S 1.0 i .5 r ad/s

(46)

25-

2.0-k

r

E

I

u-M 1.0- 05-s G) -D

o

2- 0. 1.0 0.8 ci A 0. 0_ 0_ 0.5 0.4 -ci

k

'j) E A Lf) V, 0.2 0.1 O 20 A 25 1.0 5 o RUNS . 73 T1 sec. z 036m 756

-e 1.68° 6.36 ZF 094m 6.83 Il \ I ' I ". /111,1.1

I ,'

\\'

) RUNS i7; i: s ec. 0.74° 9.45 y 015m 9.03 We rad /s We rad/s o O. 5 1.0 i .5 O 0.5 1.0 1.S

(47)

2.5- 2.0-E L Li. M 1.0-

0.5-t

s

o

2-1.0 0.8

I

NJ L) 0./+ 0.2 0_ 0_ O 0.5 0.4 - C-LI) (N E Lfl > Lu 0.2 -2 20 ci

k

Q) L i .0 RUN6 1 :i: sec. z 043m 7.25

. .

-e 1.69° 6.4.3 ZF 097m 6.91 (

jr

Ij \ 1 J

/

I ! '

_ji

\ ç , 'II-.-., I,

/

\ .' \ -.-. RUN6 c;. T1 sec. q 0.77° 9.12 y O.22m8.28

/

,- \'L We rad/s We r ad/s o. s LO i .5 O 0.S LO i .5 o 0. 1 - 5 O- O

(48)

2.5-L LL N.J 1.0- 0.5-s

t

C

2-0_ 0_ 1.0 '¼ (11 (4. E 0.8 L Lfl N.J V) 0. 0. We r ad/s 0.5 L > V) 0.2 0. 1 O We r ad/s RUN9 T1 sec z 039m 7.69

. .

-e 6.18 ZF 088m 6.75 : I

;!

,. I

\

\

I,

. I \ RUN9 ç3 T1 sec. 0.97° 10.06 y 0.28m9.46 t'

I'

,/ \ O 0.5 1.0 1.S o O. 5 1.0 1.S 25 20 ci Q) L

(49)

2.5- 2.0-k:V) E L k-J) Li 1.0- 0. 5- 4-C 2-0_ O 0.8 ci

k

v) NJ E O. 0. O 0.5- 25 > UI 0.2 O. i - O-20 o

k

C-w L i .0 i .5 PUNJO sec. z 056m 7.60

- -

-e 1.56° 6.93 ZF 0.82m 7.61 I' I II \ t ..-...-.

//

-. I . /

/1

/

Ii'_.__.

. \

\.:'

..-.

RUNJO 7; :r sec. 1.200 9.42

-y

036m 8.62 ,/ p.' .\ I

I' 'j

\\ rad /s rad/s i .5 1.0 0.5 O O. 5 1.0

(50)

RUN 12 sec. 0.70° 9.88

-y 020m 8.41 -.J s__J, & 2.5- 2.0-D E r._ 1.0- 0.5-0_

AJ

(N c L' 5 4-V) D. w L_fl cD 2-1 0 -t:i E 1.0 A I 0.8 2 Lfl N.J 0.4. RUN 2 -1/3

-

. T1 sec (N i . 0.6-V) -D ci LI E > 0.2-o. 0_ C_ UI 2C W LO O z 043m 6.64.

-o 1.80° 6.30 ZF 123m 6.62

-4 I;'

//:'í/

i' '\,/ 0.2 4/

\\

0 o. s 1.0 i .5 We ra d/s

(51)

2.5- 5 2.0-E L LL N.j 1.0- 0.5-0_

4-o

2-1.0 t', r.,j. E L.fl NJ 0.4 0.2 0_ O 0.5-P 25 0.4 - 20 ci w -D L RUNI4 . ç; sec. z 071m 7.31

-e

1.73° 6.03 ZF 115m 6.76 RUN4 17 :r1 sec. c 1.33° 926

-y O.44m8.41 I I ,_ _\ \.. ' t \ \ 0.2 - i .0 0.1- 5 O O We rod/s We rod/s ci

k

(N E L O O. S LO i .5 1.5 1.0 0.5 O

(52)

2.5- 2.0-'J) E J) IL NJ 1.0- 0.5-0_ 5

o

V) 2-O 1.0 0.8 ci Li) NJ V) 0.4 0.2 O

4

0.5- 2 > V) 0.2 0. 1 - O-A LJ) V, 1.0 5 O RUNJ6 sec. z 0.47m 8.84

.

-L85° 8.02 ZF 095m 8.72 I I j I

Ii

i / ,/' \ \ \ ' \, \ \ \ I I! I

Ii

. .

'I

I! I ". \, \ \\

\

\ " N \ N__ -.-... ..______/ RUN 16 1/3 T sec. c 1.61° 975

-y 031m 9.63 I.' I '

Á»\-

-O O. 5 10 15 o O. 5 1.0 1.5 rad/s We rad/s

(53)

2.5- 2.0-ti) (N E L u-NJ 1.0-

05-t

s Lfl

o

Lr 0_ 0_ 1.0 0.8 ci Lfl NJ 0. 0.5 0.4 -ci

k

V) E L >. L'I o 0.2 0. 1 -20 -'J ci 25 D) w i .0 5 o RUNJ7 -T1 sec. 1.22° 9.33 y O.30m8.62

-4,

I / I I.

-

---RUNJ7 -sec. z O.66m 7.34.

- .

. e 2.27°6.39 ZF 153m 6.84.

,1

I

i\

I

il

\) II \ II I. I! II i I h1 \

J

We rad/s We

rad/s

o. s LO i .5 o 0.S 1.0 i .5 o 0.

(54)

2- 2.5- 2.0-L LL NJ (il 1.0- 0.5-0_ 4-5 (N C-w

C

2-1.0 0.8 ci (N E A 0. 0. 0_ O 0.5 0.4 ci L) (N E L A L RUN 19 ir\ Il \ I ) i \ sec z 067m 6.77

- -

.

-O 2.58° 6.39 ZF 1.87m 6.72 I. I! '1 ¡I II Ii I ! I! i f Ç

-RUN9 7; sec. 1.180 10.41

-y 0.24m7.65 0.2 - : .0 0. 1 - 5 O- O We rad/s We rad/s O 0.5 1.0 1.5 O O. 5 1.0 i .5

(55)

2.5- 5 u-NJ 1.0- 0.5-0_ Lfl

o

LP) 2-i .0 0.8

r'

NJ V) 0.4 0.2 0_ O RUN2O 3 . TI sec. ¶i 1.91° 10.60 y 031m 9.50

i/

I

/

-/

\

---

-RUN2O I TI sec. z O.Slm 7.93

-o 2.08° 8.03 ZF 118m 8.69

i /

'!

I i I II il '! I \ i II! il l

\1

O 0.5 1.0 i .5 O. S LO i .5 We rcid/s We rad/s 0.5- 25 0.4 - 20 -t, ci ci

k

Di w -D A Lfl

>

V) V) 0.2 - .0 0.11 5

(56)

O- 25- 2.0-5-p 1.0 ¶ Lfl

o

2-0.8 ci (.4. E NJ 0.4

0.4-ti

I) r'.J E 0.5- 2 0_ I L ci

k

w -D i .0 0.1-1 5 RUN21 . ; sec. -z 1.11m 7.99

- -

-o 2.02° 6.01 ZF 1.64m 7.27

\

L j I\

I

\\ ( , _\-. _ /.ç

iIf\\

-

]I

\\//1 RUN 2 I I tt '1 - 1/3 - T sec. 3.77° 10.76

-y 0.82m10.31 It I I I H I I I I

II

I'

I I t I I I i i t t

r

J O 0.5 1.0 1.5 O 0.5 1.0 LS We rad/s We rad/s A w NJ 1.0- 0.5-0_ 0.2 0_ O

(57)

5

t

Lfl

o

L'i 2-ci

k

ti) NJ 10 0.8 E NJ L'i 0.4 0. 0_ 0_ O 0.5 0.4-ci

k

tIJ (N E 0.1- O-20

k

(Ni/) w A 25 L,, 1.0 II Il

Il

RUN22 . i sec z O.97m 8.42

-e 1.81° 8.04 ZF 1.31m 8.81 I' i i\I Il I i i I . I I II . I. II '

I

- . 7 . I ,/ I.' / \ RUN22 ¡ I ¡ ; I ; sec. 3.65° 10.03 Y O.73m9.63 I ¡I

i

' L O 0.5 1.0 i .5 O. 5 1.0 1.5 We rad/s rad/s 2.5- 2.0-A w NJ L'i 1.0-

(58)

0.5- 2.5- 2.0-E L w N.J UI 1.0- 0.5-0_ 5 Li)

C

UI 2-1.0 0.8 ci NJ UI 0.4 0. 0_ O 0.5 0.4- 20 ci 1J C-ci L. V .-..-. LI) ('4 L 0_ 25 : .0 RUN23 t : ; 17 z 060m 925

-o

189° 9.66 ZF 1.18m 10.58 IA ¡I ;. II ; :1 I.l II . I II ti t I

I-

\\ \\

\\/

'-N

. -..:; -. -II RUN23 ç; sec. 2.95° 11.53

-y 041m 10.86 II I/ I ¡ I I I / III I \ i -t O 0.5 1-o i.5 o. s i .0 i .5 rad/s We r ad/s 0. 1 - 5

(59)

0.5-0._

t

5-LI) 2-i .0 0.8 ¶ NJ (f) 0.4 0. 0_ O 0.5- 25 0.14 -ci

k

V) 'J E > L') 0.2 -0. -0_ ci .zz w -D A 20 LI) i .0 5 PUN24 i :j sec. z O.88m 7.03

-2.41 6.43 ZF 130m 6.90 p.»

I'

II II! II I I I, A iJ I\ II

I\

Il

I k I . i \

/\

I

j!J

I! III '

\\

/'lI N RUN 24 7;. T sec. . 2.22° 10.05 y 0.48m8.57 I I--\

\/

,\

p-.., I

/,

A

/\

/ -I ,, J I I I O 0.5 LO i .5 O. 5 1.0 1.5 We rad/s We

rad/s

2.5- 2.0-E L u-N.J (il

(60)

1.0- 2.5-

2.0-'j

k

V) NJ E w (f)

t

s Li) cD 2-0_. O 1.0 0.8

'j

k

II) NJ E N.J LJ) > (-n L .d. RUN25 I ¡k sec ¡:zÇ O.85m 7.27

-i 2.61° 5.91 185m 6.36 Il ¡I';i '! It :! II

/l

!. \\ \\ .

/

i

,

/

Ii Ii II \\ A

----.-1 ,/ ,1, I I I. 1

f/

/

RUN2S T1 sec. 2.100 10.65

--y 0.44ni 9.90 ç--' I rad/s O. 5 1.0 i .5 O 0.5 1.0 i .5 0.2 - .0 0.1 ç O 1.0- 0.5-0. O. 0.5 25

(61)

2.5- 5

2.0-k

I) ('.J. E L s-J) u-M 1.0- 0.5-(N D, Q) ¶

o

2-1.0 0. 0_ 0_ O 0.5-P 25 20 ci

C;

A V) i_O 5 RUN26 ; sec. z 0.74m 6.71

. .

-e

2.06° 5.98 ZF 146m 6.07 f' I \ \I .'fi f

\.j\

. I ' i Il i I ! j1 \ v

-¡I

i I

'I

!i

I,

/_ I

4.\.,-\\ RUN26 i7; I sec. . 1.22° 9.72 y O.30m7.92 . A

I'

We r cid /s We rad/s O. 5 1.0 i .5 O 0.5 1.0 i_5 0.4 d C-NV) E

t

> L'i 0.2 -0. 1 O 0.8 V) (N E L Lfl NJ L'i 0.

(62)

2.5- 5 2.0

-k

E 0.5-¶ 0_ O 0.5 0.4 ci

k

V) (N E Lf) I1 0.2 0. 1 -O A 25 20 cl

k

(NV) Q) -D I .0 L J O RUN27 . sec. z 0.63m 946

-e 1.52e 8.99 ZF 093m 9.08 ¡L I \ I I

\\

..\

I...j

I,'

/

\

C:

RUN27 i7; T1 sec. 3.28° 10.77

-y 052m 10.32 A

I'

I,' J

/

I \ \

\

O O. 5 1.0 i .5 We

rad/s

O O. 5 1.0 i .5 LIJe

rad/s

1.0 0.8 cl (N E L 0. O

(63)

2.5-e 5 2.0-f) E Lfl w N.J L'i 1.0-

0.5-t

0_ O 1.0 r..J. 0.8 ci .zz E A N.J o. O r ad/s 0.5- 25 0.4-ci L.-(J) (N E A Lf) (ii 0.2 - 0.1-O A I .0 We r a d /s RUN2B sec. z O.64.m 9.92

-e 1.66 9.20 ZF 103m 9.38 4 / ! f '. I.' I I II

/r'

\ . \. RUN28 1 . T1 sec. c 1.52° 9.85

-y 0.48m10.41 o. s-J) co 2-i .5 1.0 O. 5 O o O. 5 1.0 15

(64)

25- 5 2.0-ci II, r\J E IL NJ

iii

Lf)

o

V) 2- O-I.0 0.8 -D ci ti, (N. E A O. O. 0.5-' 25 0.4 ci

k

(J) '4 E L Lfl > V) 0.2 -0.1 O Lfl V) .0 5 RUN3J sec z 046m 9.48

-e

1.79° 9.41 ZF O.91m 9.16 i,

't

g;

'!

/:\ 1' \ '

it

: .\. t \ N.

-.N

. -.--

...

_-N

-RUN3I i TL sec. 1.79° 10.84

-y 026m 9.26 rad/s rad/s O 0.5 LO i .5 O O. 5 1.0 1.5 1.0- 0.5-O

(65)

2.5-2.0

'j

w NJ (il 1.0- 0.5-0_

t

s cI V) 2-(N' E 1.0 0.8 NJ V) 0. 0. 0_ O 0.5, 25 0.4

j

C-'I) 'J E 20 ci

k

V) (-'J w -C A _n J) >-V) V) 0.2-1 1.0 O. i O 1.5 RUN32 / I) II \ t ;I./\ i -sec. Z 0.62m 7.91

- -

--o 2.28° 7.30 ZF 151m 742 ii !

\'

i II I

--'--

/

-' .J i . .

\\

RUN32 c; . T1 sec. . 0.86° 10.07 y 020m 8.41 -' We rad/s We

rad/s

O 0.5 1.0 i .5 0. 1.0

(66)

2.5- 5 LO- 0.5-0_ O_ O. 0.5 -0.4 -D cl A Lfl > (il 0.2 -0. 1 O 20 -u cl

k

o, w -D A L L'I i .0 S O RUN33

;

sec. z 053m 7.89

--e

1.86 7.25 ZF Him 7.39

Il

I I Ii \I I. .1 il \i I. I! ;. RUN33 73 T sec. -1.000 918

-y 026m 8.28

--r

I J \ '-.. We rad/s We

rad/s

V) 2- O. O. 5 1.0 1 .5 O O. S LO 1.5 O I .0 0.8 cl

k

ti, (-'J. E A Lfl N.J V)

2.0-k

ti, . E L u-N.J

(67)

0.5-i 25 0.4 ci

k

(J) 'J E O 20 ci

k

r.JIfl C, ai -D A

IA

0.1-1 5 ,z ('.J

v

:

c_ 5-4.. D( ai v__n cD 2-,J v ci (J) 1.0 08 E Lfl NJ 04 Ì RUN34 sec. z 0.49m 8.54

e

1.75° 7.84. ZF O.97m 8.01

i

¡ ¡ I I t

,'

t .. ;! I! I t \ \ \

-RUN3I+ c; sec. 1.51° 10.37 y 0.29m8.94

_J

t'

/\..

t_\'\

--rad/s

1.0 i .5 O 0.5 LO i .5 O. S 2.5-2.0

k

(J) E L 1.0 0.5

(68)

2.5- 5 0.5-¶

o

V) 2-0_ O 0. 0.5- 25 0.4--'J

k

V) (N E Li) >, V) 0.2 0. 1 -0_ 20 -D

k

C-w V) I .0 RUNBS sec. z 018m 6.99 o 1.75° 5.78 ZF 1.25m6.15 I

\

i \ I I i \

I, ¡/\

\\ \\ i

\\\

I i \

r

./

\ \'

I i \

'r'

/f \ \\

I.

-..7f

II

'-\.

I \ .1 /1 I., 7

,'

\'

I \ '\

\J

I.' i

\

.

Vi /

1_-

\ \.

----RUN3S T7 T1 sec. 1.70° 9.62 y 0.50m786 'I I1

it

I I I I I I t t I I t t \ I ) 1 I , I' O 0.5 1.0 i .5 O. 5 i .0 i .5 We rad/s We rad/s I .0 0.8

k

V) CN E L NJ V) 2.O-E L LL NJ V) 1.0-O. O

(69)

2.5-e 5-, 2.0-cl (f)

r

E

t

u-NJ LO-

0.5-t

2-(I) (N E 1.0 0.8 ci 0.4 0.2 O__ O_ O 0.5 0.4 --D ci V) .4 E

t

Li) >. Lf 0.2 O. i - O-25 20 ci D) w i .0 RUN36 i7 T1 sec. z O.65m 7.77

-e

1.68° 5.86 ZF 122m 6.42 n I, . I . \

I'

111.1

__1f

\.

ir

\ I''

\

I . . i

i!

'I

. RUN36 i7 . T1 sec. 1.63° 9.94 y 041m 8.79 I i I i I I i I I

j'

O 0.5 LO i .5 0.5 1.5 We r ad/s We rad/s

(70)

2.5- 2.0- 0.5-Lu 1.0- 2 0_ O 0.5- 25 0.4 Lfl 0.2 01 O 20

e

L') i .0 5 RUN37 sec z 055m 762

o

1.77° 6.97 ZF 111m 730 t..\ /1 I I ? I\ 1 .1 ,I ! \ \

\

'

\\

rA

\"

\ \. RUN37 sec. ( y 1.28° 0.32m8.17 8.89 ,\

-

--I I

j

,-

_** \ N

-O 0.5 1.0 i .5 05 rad/s rad/s 5 .DL#*

e

r'.J Q) 1.0 0.8

e

V) (_J. E A 0.4 0. O

(71)

z

4 . iE+4

r

27:?

'Ìj

M CL' h t Lj IF1\/ijMF \,' i . O N1-ÌVEC

I-INMS 1ìc

I'

t\ì

p

L.c

.1 .2 .3 .4 .3

a;cy 1N HZ

ji A

IL/\

I

j\ ßj

70

-. --* -

. --- ..-'-

.

. I .2 .3

.t

FF.!:cy N

825-13 15:4'

RUN i

F[JL..L RANGE

i-Is =

144

CM

Ts

=

6.8 SEC

ThO

= 24G

JJEG

S@bh =

S2

IJEG LiB

=LJ

Figure 54

(72)

4 . z I-4 E 2 . '-.4 (.)

z

iii

1.E+1

t"

z

Id 1) ;: t-4 z 11j 93 21

NAVflMP \J i

. O

HAVEC

HNMEi Tyd

82-05 1 4

1 4 : 28

RUN 2 -.) ¡-REQUENCY IN !-Z 3CJ

-,.

L_

t I J

.0

. t

.2

.3

.4

.5 F.::cLENcY IN HZ VI 40

]

y'

71

-t L L_._

FULL RANGE

Fis

=

154

CM

Ts

r

5,9 SEC

ThO

= 222

DEG

S@bh =

40

DE:G U13

=LJ

Figure 55

(73)

a . 2 . z i . t

J/L

.. .Ç) .1 .2 .3 .4

FE::Cy IN

iz 6 ? 2 iAl R V D M P V i .

tIn\'E:c

E-!NIMS rd

.

-e - i.

i

: 24

RUN 3

72

-ìç

.L

2

3

. IM iz i L

FULL. RANGE

}-k;

=

154

CM

Is

=

58 3EC

ThO

= 223

IJEG

S3bh =

41

IJEG

UB

Figure 56

(J) c

r

ii i i-4 o r- 4r3

j

\/

rn-'! ,r I-i c-1 ci: Iii

(74)

z ç) p-1 'y I-I C:) hCE+4 i J

y i

HF1VEC

¡lNIìv1S Tyd

tL3

.i

.2 .3 .4 FREQIJENC'( IN I acm

-

73

-:

--

____1_ -.1 .2 .a .4 .5 I:E:u:NcY IN cm u-! L

82--05--14

16:LJ1

RUN 4

FULL RANGE

Hs

=:

152

CM

Ts

=

5.8 SEC

Thø

=: 226

IJEG

SObh

:

43

DEG

liB

= U

Figure 57

(75)

z z o o -I 3 .

i

2 . z ., r. ,;3 .J'J 2 ? -i ac 43

HAVfl1P y i

NAvE:c

FINNS íyd

82O5- i 4

1 F3 : 39

RUN 5 t.J

-L . J .1 .2 .3 .4 FREQ'J.NC'( IN HZ

74

-L .. I L . .1 .3 .4 ìREJENC'( iN HZ

ii\1r'\/\Ì'

1\I'

'

FLJL.L RANGE

F-Is =:

145

CM

1s

:

57 SEC

Th

=: 224

DEC

S!bh

:

41

DEG U13

Figure 58

(76)

C:) z 1.E+C4 ix : 2: h-4 3 . o o f-¡j: FJ C 40 ki A \/ U M P V i 1)

HA\!EC

HNMS Tyd

.

82--J5- i 4

1 ? :

I 4 RUN 6

L.

j.çj .i:

.2

.3 .4 .5 ¡;_:QuENc'( IN 1Z ii

-

75

-I L

.i

.2 .3 .4

ir:j:c( IN HZ

p _[_

i

L_

FULL RANGE

Hs

::

146

CM

Ts

3I9

SEC

Thi

228

flEG

SObh =

43

DEG U13 Figure 59

(77)

z

2.CE+34 z _tJ fL:1

L2

z

ii iiz

a i 3i t -Lc) .1

a

,.4

E:u:cY

HI_ B, -N Fi V 1) -N F 'J I . O

NA\/EC

I--IìIì"9

r'c1

82--.-05- 1. 4

1 2' : 5 1. RUN 7

76

-- A

/\

J'

, L/\j'

-.J o L._-. L

FULL RANGE

Fis

=

135

CM

Js

=

5? SEC

ThO

= 225

DEG

SObh

:

4

IJEG

Ut3

Figure 60

y

i

L (n (t' 4-)

(78)

ç,' ¶QC . 5E+C4 z ç-, 3JE+C4 3 Gi i

-

77

-V

i

.

AUVEC

-!N!N1S

Tyd

.

82--05--

i 4

18 : 2?

RUN 8 'lu

I

I.

\&N

(ç t\./

L_

J .1 .2 .3 .4 FRE2!FCy IN HZ : .. . I

. ,L.. .

! .a .1 .2 .3 ..1 .5

ti

:: 1/

1\jv\

;.I i3j

FULL RANGE

f-Is :

139

CM

is

=

5.8 SEC

ThJ

= 231

DEG

SJbh =

41

IJEG LiB

;:

U

Figure 61

(79)

>-. C: GL_ '-i '-4 3.çE+i34 )

4j

2!

-kff-VDMP

'i 1. 2)

kAVEC

HN!N1S i'J

.

8 2 -2)5

I '4

1 9 : 2)5

RUN 9 .1 I.

-

78

-FF ix I _ L

.c

.1 .2 .4

rTEc( !i-.!

z I \

/

i

-kJ\f'..\J' \j \'

I'V-I

r

t __j

FULL RANGE

Fis

=

134

CM "I"s

=

51.? SEC

ThO

= 224

IJEG

S2)bh

::

43

DEC

LiB : Li

Figure 62

r_ f "J :7 t) : ri f.) Id '-s

(80)

:4 t; g : :1 z , V,

ei

4 CL H11r/flMF

V i

.

NAVEC

HNN1S Tyd

82-05-- 1 5 08 : 2 i

RUN 10 2c

;iV

2 F'!J!c:NGY IN HL ;;i\

I3j

... .

--' "

-:'ï----:ï-'-iN HZ

-

79

-FULL RANGE

Fis

:

168

CM

Ts

=

5.5 SEC

-l'hO

= 231

flEG

Sbh

:

45

flEG

LiB

Figure 63

a: -act

(81)

(-r) z ¿ >-C.(E+4

j

fl(..!EC'( IN

2C -3 Ü.i _1 .3 .4

FF:c: ii -z

kI R V 13 M F V I . O

Jn''E:c

HNMS Tyd

82-O3-- i 5 09 : 29

RUN 12 80 :Y

FULL RANGE

Fis =:

19?

CM

1s

=

519 SEC

Fh0

:

241

DEG

SObh =

40

DEG UF3

\

Figure 64

(82)

t

4.E+4

L

--Cr) w ç. I-I

-20

!ì'-! A \/ 1] ivi F- \i' i .

HA\/FC

i-INNS iyd

8 2 2)5 --

1 5 1 f) : I i RUN 14 3. )

.0

1 2

.3

.4 .5

EUCY

i:z

j

_...j__ .-- , .1 .2 .3 - .4 FREQUENCY IN HZ

- 81

cl- L

j.

FULL RANCE

Fis

=

198

CM

Ts

=

6SEC

ThO

=: 241

DEC

Sbh

:

44

DEG LiB

=: U

Figure 65

(83)

4 . E+Y4

r

'4U 2;3

i--i

V 1. O

NA\/EC

HNMS Tyd

82O5- i 5 10:59

RUN 16 it f LI

82

-a Fíz:QJ:c( I1 HZ 3i; e.. s S. o s ,- 13( -I.!

,.c

.1 2

.a

.4 .9 Iì'i HZ çJ, y

\

1

\,J\/\

FUL.L RANGE

Fis =:

203

CM 1-

=

5$j SEC

ThO

= 235

IJEG

SObh =

45

IJEG U13

Figure 66

t_

-

V

(84)

I 4

:. t

.}\/11r/IL.)

\/

Çj)

HAvE;c

!INNI5 Tyd

.

8 2 -J5 -- i 5

1 2

: ?

RUN 17

ïL'-FI. 83

\

çt

i

. ' .. L._... ._.L_ .2 3 .4 .5

FEO'( I

!

FULL RANGE

LJ ..-. I IZ)

Ts

:

6.2

1-hra

:

233

83bh

=:

43

LiB : U

Figure 67

'-'i -):_C

flEG

IJEG

t\ ti \ \ I t!;

(85)

r3 1f 1, 2? I !ì A \' n M F:.) ,'

i

O

I,-

PI'

II'

I %

_) r

-'-r1/t.L

ri!H

J yd

Oj-Ib

lc

19

RUN 19 c; .

:i- r

?

IJLL

.1

.2

.3 .4 I1 Ft/ s

¿---r

r

84

-.5

FULL RFÌNGE

Hs

=:

22?

CM Ts .:

6.2 SEC

ThO

= 233

IJEG

SObh =

46

IJEG LJI3

=LJ

Figure 68

(86)

.

G .

85

-!'\i Fi V n M F

\/ I

NAVEC

1INM3 Tyd

82)5-- I Ei

i 3 : 55

RUN 20 (.r.:(:U::;!cY IN IZ .1 .2 .3 .4

FFt.:NcY ì; HZ

A \ kñ;

vt

\t \

r

L_.

FULL RANGE

kls

:

22?

CM

]

=

8.2 SEC

THO

=

236

DEG

SObh

::

43

IJEG LiB =: Li

Figure 69

o b t. z ti: E! h I

z

'-I 3 -. s s s. "i f

2J

(87)

e.

a

kAVDMF

\J i

Ø

NAVEC

¡-INMS 'Iyd

it V

-

86 I\J ç,

La

.t

.2 .3 .4 FF(1.ENCY £;1 HZ

pL_.L

1_____.I._____J .2 .3 .4 .5 'si::o1.FJNcY IJ ii;

E32-Y:i-15 15:52

RUN 21

F'LJLL RANGE

Hz; :

263

CM

Fs

-:

6.6 SEC

Th

: 23E3

IJEG

9Çbh

::

40

1JEG 1113

Figure 70

2?U - e.

(88)

z I' -4 .7 J (I 14 }--4 . 3 i 1V . _. _.L_. 1:.---..---L..._._j i.Q .1

..

.3 .4 Iî'! z

t1

t ,-

1i

v1F-ì y 1J).J V i

k1AvE(:

f-INMS Td

.

8 2 --Y5 -

I 5 1 G : 27

RUN 22

87

-FUL.1_ RANGE

I-is

=

249

CM

Ts

:

SEC

TuO

:: 233

DEG

Sbh

:

42

1JEG LiB .:

Figure 71

-7 :)u

-r

!L. A .ç,

i

.2

.3

.4 Ii HZ

(89)

e. >-. t !i 'ti p I -.1 .2 .3 .4 .5 FREQJC'( £ì lIZ CCT -Cn (n t .j t-4 C, z t-4

NAVDMP V i

.

,\IA\/rC

HNME; Tyd

E32-5 i 5

1 7 : i

RUN 23

88

-:

L_.JL

I ::L(3 .1 .2 .3 .1 F:QU::NY IN HZ 3 ;3 r-.

FULL RANGE

F-Is

=

2?)

CM

ís

=:

6.5 SEC

ThO

=: 233

IJEG

Sbh =

41

IJEG LIB

Figure 72

(90)

. r

.j

4;3

-kIAVflN!P

\/ i

.

!iAVEC

FINNS TyrL

82-05-15 17:3?

RUN 24 F-UENC'( IN I17

r

89

-.. .1 .2 .3 .4 .3 IN HZ

FULL RANGE

Fis

=

25?

CM Fs :

6? SEC

Th3

rz:

239

DEG

S5bh =

42

DEG

UB

z:U

Figure 73

(91)

o z LJ 2;». _1 '7. o

î:j

o ri: LII

kIAVIJMP

\/ I

2)

NAVEC

!INMS 'Tyd

82-ø5- i 5

1 8 :

i 2

RUN 25

.E+C4

-FULL. RANGE

_. jf ¡

2.eE+4

-

>-t

L

1/\

J r t .- . t . 2 . i . 4 F:'2U::NcY il

90

-;:

L

I I I J

c.;;

.1 .2

.a

.i

H;

=

251

CM 'Ts =:

6.6 SEC

Th3

=: 239

flEG

S3bh

43

IJEG LiB

= Li

Figure 74

(92)

J

; .

cE:4

' .J 4* JE+c4 _; 3 . eEI4

-I

\i

t . E+$

¡ I

¡y

; L I

..t

.2 .3 .4

FEQU::Y .t:i

liZ

3( -. .. b. s c

-

91

-k.U:p,'flMF) V I

O

NÍÌ"/EC

HNMS T'c

82-05-16 OS :

I i RUN 26 LLd . L .2 .3 , 3

FF(U:G'( IN

Z

-tI\r

t_

.. L

FULL RANGE

I-k;

=

204

CM

Ts

=

6.8 SEC

ThO

:

274

flEG

S2bh

:

48

IJEG

LiB ::: Li

Figure 75

t 2 ? o 3! iecì u

(93)

z I-1 ('j s-(-': I :i t LI

z

i'

- I l- I 3C

41-\.) ) .1 .2 .3 .4 FREuE.:c'( IN IZ

NA\/JJMF V I

. O

kIAVEC

HNr'S Tyd

32-O5--- I B 09 :53

RUN 27 . . I Ij

n

V /

92

-Li

.1 ,2 .3 .,. .9 EF:':'_i:J iN J

_i

.--FULL RANGE

Fk

=

204

CM _l_s

=

6.6 SEC

1.hO

= 268

DEG

SObh =

48

DEC

liB

Figure 76

'LI (.1

(94)

- I 3Cjr-2 9

VIRVIJNIP V i

NFÌvE:c

HNMS i>i

2-)3-- I G

i i :

RUN 28 13 . E±34 r-I A. L i .1 2

.3

.4 FREi1::Mc7 IN

-)c

1

.2 .3 .4 .5

FFTh'( Ii lIZ

A ,\ / \

/\/\

ì

'

i

s. s

-

93

-r --

L

.L.

j

FUL.L RANGE

H

=

192

(2M

T

--

6,6 SEC

Ih?J

278

IJEG

SC)bh =

5ç)

1IEG

UB

=

Li

Figure 77

2 L i.'

(95)

3.E+4

::3 b-. t 1') 3 3í! r--ir

94

-V I .

ff1'E:c

HNrls iyd

8 2 -35 - i ?

J? : 47

RUN 30

:''

-

r-5

FR!C( IN

t ..,... .

;.f_

.. . .1 3 4

íF::y Iç't

f3

L_

.L.

... L..

FULL RANGE

I-Is

=

174

CM

Ts

=

7114 SEC

Th@

:

313

IJEG

SObh

:

38

DEG LJI3 =: Li

Figure 78

(96)

ú

>. F». 3 . ).. , I L rJ.Q

.t

.2 .3 .4 .5 IN HZ e.') .1

..

.3 .4 .5

FRE.J;c( Ii HZ

u') AJ flV [J M F V I .

NAVEC

HNMS Tyd

82-95--18

J?:55

RUN 31

FULL RANGE

1

Fis

=

178

CM

Fs

=

6.2 SEC

TFì3

= 312

tJEG

Sbh =

63

IJEG

U3

s

r

r

L L

Figure 79

(97)

z r-l) z ri: X (j) f3.E-:434 3G) 93 ç

L

....

L

.

. LL

J L3 1

2

3

.4 Fí;:EQuE-N<:'( l-1 }-F: k

r

4 3L.

96

-N ç:

\'

j N I F-

\/ I

O Ní:1\,'EC

HNMS Tyd

82-05-- i 8 OJ : 30

RUN 32 VP . . I S

4_

FUL.L. RANGE

Hs

=

195

CM

1s

=

6.3 SEC

ThO

3 6

JEG

S0kih

=

64

1JEG U13

=fl

Figure 80

. p

Ic

-LI

(98)

z

2 n F iç.jç -

ss

-

97

-\/ n '!

F- '1 i a U

NAVEC

1-INNIS Tyd

.

32)5- i 8

f)9 : 22

RUN 33 .1

.2

.3 ,,4 *5 IN HZ

FULL RANGE

Hs

:

178

CM

Ts

::

E3SEC

Th@

= 288

IJEG

S)bh

:

71

DEC

LiB

Figure 81

ç CE+24 >-I-I íÌ L . lì

/

EF.YC'( 1I HZ

t p1/' V

(99)

t t! i-I t, Lt t; . CE+24 4ç 2 E! N 1-1 " n M F V i.

tirk,'E:c

HNMS Tyd

82--E5-- i 8

('39 : 5S

RUN 34

_ZL_.

2::r----.-k,LE! .1 .a .3 .4 .5

FCY I

liZ

.---

. -- l.._.._ L . J .c . 1 .2 . . .5

FRQ:;:' IN I IZ

1

J\

1k1I

'\\/\//*

-

93

----,-

. '__L_

J

FULL RANGE

H;

=

Is

=

Th3

=

SOk)h =

LJL3

Figure 82

1SG

CM

559 SEC

242

DEG

75

flEG

'3

(100)

s . fi i'1 II,

-iv

'-j .1 .d .3 .4 EQtjL::tcY IN HZ .1 .2

.'

.4 .9

FFEu:cf i:t ;iz

(mr-k'I i-1 'I lì j 1 F

V i

U

NA\/EC

1-JNMS Tyd

82-05- I E3

I O : 5?

RUN 35 il

FUL.L RANGE

-

l

99

-/\ ¡v\

i'\j

V

ì\ i

V,

f-Is

2)3

Cil

-[.s =:

SE:c

Th

= 216

IJEG

9Obh =

71

IJEG

UB

=F3

I

s

Figure 83

(101)

ji2.3.1.n4

z

3

r-!'1 A 'i f.) l'i F V i . O

NAVE.0

I-INNS

!/C1

82--E15-- i 8

1 2 : i i

RUN 36

-

.2

.3 .4 FrQtJ!.'C'( IN HZ

loo

-. i .? .J .4 .3

I

HZ \,/\ i \ f I .il

FULL RANGE

E-ls

=

191

CM

1s

=

5119 SEC

rHo

= 218

DEC

SObh

:

68

DEG LiB

r-

Figure 84

Cytaty

Powiązane dokumenty

(co nie zachodzi w wypadku użycia odczynnika Nesslera). Zamiast stałego NaOH lepiej użyć stężonego roztworu NaOH, w którym wyznacza się ilość NaOH z jego

Odebranie mienia bez zapłaty sumy odpowiadającej w uzasadnionym stopniu jego wartości jest zwykle nieproporcjonalną ingerencją, a całkowity brak odszkodo- wania może być uznany

Pisma Maurycego Mochnackiego Pamiętnik Literacki : czasopismo kwartalne poświęcone historii i krytyce literatury polskiej 9/1/4,

To przecież oczywiste, że student chętniej pójdzie na zajęcia wykładowcy, którego uważa za znakomitego specjalistę i którego zajęcia go rozwijają, są interesujące,

Artykuł umieszczony jest w kolekcji cyfrowej bazhum.muzhp.pl, gromadzącej zawartość polskich czasopism humanistycznych i społecznych, tworzonej przez Muzeum Historii Polski

zagran

Złe warunki lokalowe zespołów adwo­ kackich męczą fizycznie i psychicznie członków adwokatury, sprzyjają byle jakiej pracy w tłoku (a jak wiadomo, odbywa się

Kwestią, jak się wydaje, decydującą pozostaje bowiem nie tylko poziom recepcji przez wiernych zawartych w nich treści katechetycznych i w rezultacie rozdźwięk