• Nie Znaleziono Wyników

FEM analysis of shell structures CMCE Lecture 5/1, Civil Engineering, II cycle, specialty BEC

N/A
N/A
Protected

Academic year: 2021

Share "FEM analysis of shell structures CMCE Lecture 5/1, Civil Engineering, II cycle, specialty BEC"

Copied!
41
0
0

Pełen tekst

(1)

FEM analysis of shell structures

CMCE Lecture 5/1, Civil Engineering, II cycle, specialty BEC

Adam Wosatko

Institute for Computational Civil Engineering Civil Engineering Department, Cracow University of Technology

e-mail: JPamin@L5.pk.edu.pl

With thanks to:

Maria Radwańska, Anna Stankiewicz, Jerzy Pamin, Piotr Pluciński

(2)

Layout

Membranes (plane stress) Deep cantilever beam

Plates – conforming FE Conforming FE Square plate Corner plate

Shells

Some theoretical aspects Shell FE

Cylinder container

(3)

FE Q4 for membranes

Quadrilateral

u3

v3 v4

u4

b

η = 2 y /b

ξ = 2 x /a X Y

a

u2

v2

v1

u1

4 3

1 2

NDOFN = 2 NNE = 4

NDOFE = NDOFN × NNE = 8

Displacement vectors for node and element:

qn= {un, vn}T

qe= {u1, v1|u2, v2|u3, v3|u4, v4}T for n = 1, ..., NNE , e = 1, ..., NE

For approximation ofboth displacementsu(ξ, η) i v (ξ, η) we use shape functions Ni, i = 1, 2, 3, 4, which are bilinear (liniear in each direction for standard coordinates ξ, η ∈ [−1, +1]):

un(ξ, η)(2×1)= {u(ξ, η), v (ξ, η)} = Nn(2×8)qe n(8×1)u(ξ, η) = N1u1+ N2u2+ N3u3+ N4u4

v (ξ, η) = N1v1+ N2v2+ N3v3+ N4v4

(4)

Bilinear shape functions

for quadrilateral Q4

N1=14(1 − ξ)(1 − η) N2= 14(1 + ξ)(1 − η)

(5)

Stiffness matrix of FE Q4 for membranes

Stiffness matrix:

ke n(8×8)= Z Z

Ae

BnT(8×3)Dn(3×3)Bn(3×8)dA

Kinematic relation matrix:

Bn(3×8)=

∂N1

∂x 0 ... ∂N∂x4 0 0 ∂N∂y1 ... 0 ∂N∂y4

∂N1

∂y

∂N1

∂x ... ∂N∂y4 ∂N∂x4

Constitutive matrix:

Dn(3×3)= Dn

1 ν 0

ν 1 0

0 0 1−ν2

Membrane stiffness: Dn= 1−νE h2

(6)

Deep cantilever beam (ROBOT)

Membrane example

Mesh 4 x 16 Deformation

(7)

Deep cantilever beam

Contour plots

displacement UX [cm] displacement UY [cm]

stress σx [MPa] stress τxy [MPa]

(8)

Rectangular FE for plates

Rectangular, conforming

Degrees of freedom of a node:

qw

[4×1]

= {w , ϕx, ϕy, χ}w= {w , ∂w /∂y , −∂w /∂x , ∂2w /∂x ∂y }w Degrees of freedom of an element:

qe

[16×1]

= {q1, q2, q3, q4} = {w1, ϕx 1, ϕy 1, χ1|w2. . . | . . . | . . . χ4}

(9)

Approximation of deflection field

Dimensionless surface coordinates: ξ = 2 xa − 1, η = 2 yb − 1 Polynomial approximation:

w (ξ, η) = (α1+ α2ξ + α3ξ2+ α4ξ3)(β1+ β2η + β3η2+ β4η3) = C1+

C2ξ + C3η +

C4ξ2+ C5ξη + C6η2+

C7ξ3+ C8ξ2η + C9ξη2+ C10η3+ C11ξ3η + C12ξ2η2+ C13ξη3+ C14ξ3η2+ C15ξ2η3+

C16ξ3η3 ue

[1×1]= {w (ξ, η)} = N

[1×16](ξ, η) · qe

[16×1]

=

= {N11, N12, N13, N14, |N21. . . | . . . | . . . N44} · {w1, ϕx 1, ϕy 1, χ1|w2. . . | . . . | . . . χ4}T

(10)

Bicubic shape functions

for first node of rectangular plate FE

N11 corresponds to w1 N12corresponds to ϕx 1 N13corresponds to ϕy 1

N14corresponds to χ1

(11)

Stiffness matrix of FE Q4 for plates

Stiffness matrix:

ke m(16×16) = Z Z

Ae

BmT(16×3)Dm(3×3)Bm(3×16)dA

Kinematic relation matrix:

Bm(3×16)=

∂x2N211∂x2N212∂x2N213∂x2N214 ... −∂x2N244

∂y2N211∂y2N212∂y2N213∂y2N214 ... −∂y2N244

−2∂x ∂y2N11 −2∂x ∂y2N21 −2∂x ∂y2N31 −2∂x ∂y2N41 ... −2∂x ∂y2N44

Constitutive matrix:

Dm(3×3)= Dm

1 ν 0

ν 1 0

0 0 1−ν2

Bending stiffness: Dm= 12(1−νEh3 2)

(12)

Square plate

5 7

4 K

Y

Z

X

Data:

I dimensions LX = LY = 3.0 m

I thickness h = 0.12 m

I load intensity

pz = q = −14.4 kN/m2

I Young modulus E = 32.0 · 106 kPa

I Poisson coefficient ν = 0 Bending stiffness Dm=12(1−νEh3 2) = 4608 kNm.

(13)

Sign convention – ROBOT

Bending moments and transverse forces

Axis 0Z is oriented upwards, so positive bending moments cause tensile stresses at the top surface.

z

x

y tx

mx my

ty

myx mxy

(14)

Square plate – results

w7 mx 7 mx 5 my 5 my 4

[mm] kNm

m

 kNm

m

 kNm

m

 kNm

m

 Eng. comp. -2.303 -11.37 -6.58 -2.19 15.23 Package Mesh

ALGOR 8 × 8 -2.316 -11.27 -6.53 -2.15 13.20 GRAITEC 8 × 8 -2.344 -11.51 -6.64 -2.31 12.27 ROBOT 8 × 8 -2.355 -11.63 -6.73 -2.30 14.96 ALGOR 32 × 32 -2.344 -11.39 -6.59 -2.19 14.75 GRAITEC 32 × 32 -2.392 -11.44 -6.66 -2.18 14.47 ROBOT 32 × 32 -2.394 -11.50 -6.67 -2.21 15.19 ROBOT 128 × 128 -2.410 -11.47 -6.68 -2.16 15.29

(15)

Square plate – results

Contour plots mx and my

mx

my

ALGOR GRAITEC ROBOT

(16)

Corner plate (ROBOT) – data, applied meshes

I length of segment L = 4.0 m

I thickness h = 0.12 m

I Young modulus E = 10.0 · 106kPa

I Poisson coefficient ν = 0.17 Deformation

Regular mesh Mesh refined at corner

(17)

Moments m

x

Regular mesh Mesh refined at corner

(18)

Moments m

y

Regular mesh Mesh refined at corner

(19)

Moments m

xy

Regular mesh Mesh refined at corner

(20)

Principal stress directions – top surface

Regular mesh Mesh refined at corner

(21)

How many times should mesh be refined?

Element Concave corner mesh mx ,max= my ,maxkNm

m

 regular 38.12

refined once 47.22 refined many times 133.93

(22)

Engineering shell structures

Curvilinear roofs

http://www.ketchum.org Drilling vessel supports

Branch shells

(23)

Shell classification – slenderness

Shells:

I) thin → apply Kirchhoff-Love theory,

II) moderately thin → apply Mindlin-Reissner theory,

III) thick → compute 3D continuum model, e.g. problem of thick-walled pipe.

(24)

Three-parameter shell theory

Kirchhoff-Love – thin shells

Thin shell

Thickness is much smaller than minimum curvature radius:

h Rmin < 1

20÷ 1 30. Kinematic hypothesis →

independent kinematic fields in shells are three displacements:

u11, ξ2), u21, ξ2), w (ξ1, ξ2), in local directions (e1, e2, n), introduced at point of middle surface.

Static hypothesis →

stresses σn, τ1n, τ2n in thin shells are much smaller than others.

(25)

Boundary conditions

Boundary conditions (static and/or kinematic) can be imposed:

I at points,

I along lines,

I on surfaces.

At edge points we can apply boundary loads which correspond to local boundary coordinates.

(26)

Types of kinematic constraints

Type of kinematic constraints

Free edge → different displacement constraints → fully clamped edge

(27)

Membrane state in shells

Membrane state – stress distribution along thickness is homogeneous.

This state is optimal in shell from the viewpoint of material use.

However, we must ensure suitable boundary conditions and loading.

(28)

Disturbances of membrane state

induce bending state

I Bending moments and transverse forces increase quickly as their origin is approached

Membrane state and its disturbances

p

boundary conditions boundary loads not smooth changes of thickness

p p

p

(29)

Shell FEs – classification

I FEs based on shell structures theory

I FEs 1D – geometrically one-dimensional

I Flat FEs 2D – three- or four-noded

I FEs 2D – curvilinear, based on Kirchhoff-Love theory for thin shells or Mindlin-Reissner theory for moderately thin shells

I so-called degenerate FEs, based on equations for 3D continuum, but with hypotheses as adopted for shells, in accordance with

five-parametric Mindlin-Reissner theory

I FEs for 3D solids – thick shells We consider:

I number of approximated fields in FE,

I number and type of degrees of freedom at node,

I formulas for internal energy and types of integration for stiffness matrix and external load vector.

(30)

Shell FE 1D

for axisymmetric problems

Geometrically one-dimensional finite element models meridian of

axisymmetric shell, but all functions are developed in trigonometric series in circumferential direction.

u(ξ, Θ) =

u1

u2

w

=

u v w

=

=

J

P

j =1

uj(ξ) cos(j Θ)

J

P

j =1

vj(ξ) sin(j Θ)

J

Pwj(ξ) cos(j Θ)

(31)

Flat FE 2D for shells

three- and four-noded

Flat finite elements for shells with 3 or 4 nodes are formulated as a result of superposition of membrane and bending states.

+ =

+ =

We obtain the following degrees of freedom in node:

qnw= {u, v }w qmw= {w , ϕ1, ϕ2}w qw= {qnqm}w= {u, v , w , ϕ1, ϕ2}w

(32)

Flat FE 2D for shells

implmented in ROBOT package

We should introduce third rotational degree of freedom in shells, especially if we compute shells with sharp edges or branching: ϕnis this sixth degree of freedom, hence:

qw= {u, v , w , ϕ1, ϕ2| ϕn}w.

Angleϕnis rotation around the normal to middle surface at node and is useful in tranformation of complete DOF set into other coordinate

(33)

Curvilinear shell FE 2D

based on classical three-parameter theory for thin shells

Approximation of displacement field (3 translation variables):

u(ξ1, ξ2) = {u11, ξ2), u21, ξ2), w (ξ1, ξ2)} =

= {u(ξ1, ξ2), v (ξ1, ξ2), w (ξ1, ξ2)} = N

[3×NDOFE ]

· qe

[NDOFE ×1]

DOF vector at node:

qw= {u, v , w , ϕ1, ϕ2}w or qw= {u, v , w , ϕ1, ϕ2| ϕn}w

NDOFN = 6 NNE = 6 NDOFE = 36

NDOFN = 6 NNE = 8 NDOFE = 48

Elastic energy (internal):

U = Un+ Um=12RR

A

enTsn dA + 12RR

A

emTsm dA

(34)

Cylinder container

Fourth-order displacement differential equation for axisymmetric membrane-bending state and its solution

wIV(x ) + 4β4w (x ) = 1

Dm[pn+ ν R(

Z

p1dx + C1)]

where: β = r 1

Rh ·p4

3(1 − ν2)

w (x ) = wo(x )

| {z }

general solution

+ w (x )

| {z }

particular solution

=

= e−βx[B1cos(βx ) + B2sin(βx )]

| {z }

quickly increase with x

+ e+βx[B3cos(βx ) + B4sin(βx )]

| {z }

quickly decrease with x

+ w (x )

w (x ) – normal displacement for membrane axisymmetric state wo(x ) – normal displacement for local bending state

(35)

Cylinder container

Geometry, material, loading

I height L = H = 20.0 m

I radius R = 10.0 m

I thickness h = 0.12 m

I Young modulus E = 15.0 · 106kPa

I Poisson coefficient ν = 16≈ 0.1667

I dead load

p1= −γbh = −24 · 0.12 = −2.88 kPa

I hydrostastic pressure

pn= γc(L − x ) = 10(20 − x ) kPa

I bending stiffness

Dm=12(1−νEh3 2) = 2221.7 kNm

I boundary conditions w (0) = 0, w0(0) = 0, m1(L) = 0, t1(L) = 0

Long shell?

β = 1.193 m1, λ = πβ ≈ 2.63 m λ - length of half-wave 3 · λ < L ?

≈ 7.9 m < 20 m ⇒ YES

(36)

Cylinder container – membrane state

Analytical solution

Normal dispalcement w

0 5 10 15 20

0 0.2 0.4 0.6 0.8 1 1.2

x [m]

w(x) [cm]

Meridional force n1 Circumferential force n2

10 15 20

x [m] 10

15 20

x [m]

Normal displacement function:

w (x ) = w (x ) = R

EhcR + νγbh)(L−x )

(37)

Cylinder container – disturbance of membrane state

Analytical solution

Normal displacement w Transverse force t1 Meridional moment m1

0 5 10 15 20

0 0.2 0.4 0.6 0.8 1 1.2

x [m]

w(x) [cm]

0 5 10 15 20

−20 0 20 40 60 80 100 120 140 160

x [m]

t1(x) [kN/m]

0 5 10 15 20

−70−60−50−40−30−20−10 0 10 20

x [m]

m1(x) [kNm/m]

m1(0) = −67.6kNmm

Meridional force n1 Circumferential force n2

0 5 10 15 20

−60−50 −40 −30 −20 −10 0

x [m]

n1(x) [kN/m]

0 5 10 15 20

0 500 1000 1500 2000

x [m]

n2(x) [kN/m]

n2(2) = 1841kNm

(38)

Cylinder container – disturbance of membrane state

Numerical solution – ROBOT

Circumferential force n2 Transverse force t1 Meridional moment m1

(39)

Cylinder container – disturbance of membrane state

Numerical solution – ANSYS

Meridional moment m1 Circumferential moment m2

Meridional force n1 Circumferential force n2

(40)

Cylinder container – disturbance of membrane state

Summary

Analytical solution

wmax n2,max n2,min m1,max m1,min

[cm] kN

m

 kN

m

 kNm

m

 kNm

m

 position of x [m] 2.3 2.32 0.0 1.3 0.0

value 1.028 1841.3 -9.60 14.68 -67.64 Numerical solution

ANKA (FE 1D) 1.024 1835.9 -14.25 13.96 -67.67 ROBOT (FE 2D) 1.024 1846.8 -9.97 14.32 -60.52 ANSYS (FE 2.5D) 1.020 1847.8 -7.10 13.72 -58.19

Element type NE Active NDOFS

ANKA SRSK – 1D 20 80

ROBOT flat – 2D 1280 7680

(41)

References

M. Radwańska. Ustroje powierzchniowe. Podstawy teoretyczne oraz rozwiązania analityczne i numeryczne. Skrypt PK, Kraków, 2009 (in Polish).

R.D. Cook, D.S. Malkus, M.E. Plesha, R.J Witt. Concepts and Applications of Finite Element Analysis.

University of Wisconsin–Madison, John Wiley&Sons, 2002.

O.C. Zienkiewicz, R.L. Taylor, J.Z. Zhu. The Finite Element Method:

Its Basis and Fundamentals. VI edition, Elsevier Butterworth Heineman, 2005.

M. Radwańska, A. Stankiewicz, A. Wosatko, J. Pamin. Plate and Shell Structures. Selected Analytical and Finite Element Solutions. John Wiley &

Sons, 2017.

Cytaty

Powiązane dokumenty

Jak wspomniano wcześniej, wiedza dotycząca systemów naprawy DNA jest niezwykle istotna dla pełnego zrozumienia jak komórki kontrolują integralność swojego genomu. Z roku na

The analytical constant modulus algorithm (ACMA) is a determin- istic array processing algorithm to separate sources based on their constant modulus.. It has been derived

Przypominając artystyczną - młodopolską - genealogię autora Dziec- ka salonu oraz stopniowe uwalnianie się od niej, historycy literatury ukazują, jak - wspólny dla całej epoki

The inc1usion of a linear isotropic hardening elasto-p1astic material model in the present finite element fonnulation has been shown to

We Wrocławiu decentralizacja funduszów na zakup książek, aż do szcze- bla dzielnicowej biblioteki, nastąpiła w 1959 roku. Dzielnicowe biblioteki Krzyki i Psie Pole

Niemniej jednak liczne z poruszanych w niej w ątków składają się na integralną propo­ zycję pojmowania dzieła sztuki słowa oraz sposobów jego badania.. *

First the influence of road infrastructure and traffic on soil, water and air quality will be described, ecological research in roadside verges and the effects of fragmentation

Dotychczasowe wydania nie zawierają zresztą wszystkich materiałów stanowiących treść danej księgi, po­ nieważ w ydaw cy na ogół ograniczali się do publikowania