• Nie Znaleziono Wyników

Photoacoustic spectra of oriented systems

N/A
N/A
Protected

Academic year: 2021

Share "Photoacoustic spectra of oriented systems"

Copied!
11
0
0

Pełen tekst

(1)

0. Fr«ckowlak, S. Hotchendani, R. M. Leblanc

PHOTOACOUSTIC SPECTRA OF ORIENTED SYSTEMS

Photoecouetlc spectroscopy peraita for a direct

measu-rement of thermal deactivation of orlantad excited molecu-

lea, Thia method haa been applied for atudles of a mixture

of phycoerlthrln, chlorophilin and phycocyanin and

of

chlorophyll a and chlorophyll b. Analysis of the

obtai-ned spectra auggeata that a part of anargy

absorbed

by

chlorophyll a et the Soret band migrates to chlorophyll ta.

The migration probably takea place in mixed aggregates of

theae plgmenta, apparently containing LC.

Moat of acceeeory plgmenta of photoaynthetlc organisms is

in eome extend oriented. These plgmenta can be excited directly,

by light ebaorption or by excitation energy transfer from

ot-her molecules absorbing in shorter wavelengths region.

Every

one pigment moleculee cen emit fluorescence, transfer its ex-

citetion to other pigment or dissipate it on heat.

In organisms in result of efficient energy transfer

only

the fluorescence of pigment absorbing at long wavelengths

re-gion la usually observed. Three proccesess emission of

fluo-rescence, thermal deactivation and energy transfer compete with

each other. The efficiency of energy transfer depends strongly

on mutual orientation of donor and acceptor transition moments.

This effect is specially important in oriented systems. From a-

nalysls of fluorescence spectra [l] it is not caBy to establish

the fate of- exci

tation energy-in

- • chain of excitation

donor*

and acceptor occurlng in photosyntetic organisms. Even in

mo-del system containing only part of pigments such analysis

in

not unlvoeal [1].

(2)

The photoacouatic spectroscopy (PAS) [2] providee the

op-portunity of direct meaeuromont of thermal deactivation of

ex-citation in pigmenta.

Photoacoustio apectre »»are neaaured

on

airtgie beam photoacouatic spectrometer conatruoted in Centre de

Recherche an Photobiophyeique in Troie Riviiree [3]« Ae

enieo-

tropic matrix simulating the anisotropy of lameller ayatem atre-

tchad polyvinyl alcohol (pva) films or nenetio liquid

cryatals

m r t used. The mixture of phycoerythrin end chlorophyllin [4],

phycoerythrin and phycocyanin [5], and chlorophyll a end

chlo-rophyll b [6

] were investigated.

Phycobiliproteins occur in blue green and red eigne.

They

ere transfering their excitation energy to chlorophyll

predomi-nantly in a sequence« phycoerythrin (PE) -*• phycocyanin (PC)

allophycocyanin (AC) — chlorophyll, but alao aome branching of

theaa scheme Fig, 1

is not excluded, beceuee of strong

overlap-ping

of

bands. System ie even more complex, then

preaanted

in Fig, 1, because every one of billprotelna possesee more than

one type of chromophoree, Figura 2 present» the acheme of

inves-tigated system in PVA [4, 5],

h\r

Fig. 1, Scheme of excitation energy migration in blue-green algae

PE - Phycoerythrin, PC - Phycocyanin, Chi - chlorophyll, APC -

al-lophycocyanin, PSI - photoaystem I, PCh - photochemicel reaction,

ET - energy tranefer, TO - thermel deactivation

Schemat migracji energii wzbudzenie w blękitnozielonych algach

PE - fikoerytryna, PC - fikocyjenina, Chi - chlorofil, APC - el-

lofikocyjanina, PSI - fotosyatem I, PCh - reakcja fotochemiczne,

(3)

% T , m i

V "

Fig. 2. Schema of excitation energy aigretlon In investigated

mo-del eyetea

Scheaet algrecjl energll wzbudzenla w badanyn aysteaie modelowym

Chlorophyllln (chlin) 1« e water-soluble chlorophyll

deriva-tive which can ba uniforaly distributed together with blliprote-

lna in the eeae PVA matrix.

Figure 3a ahowe the PAS of PE (curve 1), Chllin (curve

2)

and their aixture (curve 3) In PVA film. In Fig. 3b the »um

of

PAS of PE and chllln aeaaured in eeporate fila* (curve 4)

i*

coapared with PAS of plgaent aixture (curve 3).

The difference between apactrua 3 and 4 (Fig, 3b) in a

re-gion of chllln absorption la aaall and can be explained by the

changea In chllln aggregation in presence of PE. Slallar changes

have also been observed in abaorption apactra. The increase of

photoacouetlc algnal In the region of PE absorption in

however

vary high. It Is known that PE fluorescence yield,

is

ra-thar high.

For R-PE in buffer eolution.

tjj.

17]. Fluorescence

quantum yield for chlorophyll in ether solution is 0,

22, i}2 for

Chllln is lower than that the chlorophyll. From the

cooparison

of the fluorescence intensities of PE *nd Chllln in PVA

exci-ted in the region of siailar absorption,

the ratio > 2/

r)i

(4)

-Fig. 3. Photoacoustic spectra of pigments In PVA

b

) 1 - PE c4 • 3.2 • 10"6 M, 2 - Chllln c, • 15.7 • 10“s M, 3 -

ml-f PE Cj and Chllih r

--- --- "

e— “*

curves 1 and 2 from

xture of PE‘c4 and Chllih

c,

in tha same film» b) 4 - Sum of

‘ “ *

Fig. 3a compared to epactrum 3

Widma fotoakustyczn» barwników w PVA

a) 1 • PE Cj « 3,2 • 10~°mol», 2 - chllin c- • 15,7 • 10"5 mole, 3

- mieszanina PE c 4 i chllin

w tamtym filmie; b) 4- suma k r z y

wych 1 i 2 z rys. 3a porównane do widma 3

■ 0.21 is found. Therefore the quantum yield of Chllin

fluore-scence (t)2) in PVA is about 0.12 supposing that

i)^ in PVA i*

similar to that in buffer.

Photoacoustic signal qj of PE alone can be expressed

ap-proximately by the following formula:

(5)

where S 1* • constant ¿«pending on apparatus sensitivity; aJ( the

fraction of tha light absorbed fro» the incident light intensity

Pj <t>£, the yield of PE fluorescence; y, the frequency of

inci-dent light, Yf# -the aean frequency of PE fluorescence bend. In

case of PE,

-

T^Tf ^

therefore«

ql “

(2^

For PE Chllin aixture, the photoacouetlc signal is epproxl-

aetely given byt

q2 - Sa2P [l - (<I>2 4>et ♦ i.jCl - $ ET)}]

(3)

where *2 la the fraction of tha light abeorbed

by the mixture

froa the incident light Intensity P| 4>ET, the yield of exelte-

tion energy tranefer froa PE to chllin; $ 2 ,

the yield of Chllin

fluoreacance.

At <t>2 < «tjt

q2 - Sa2P(i -

<t>ET )

(3# >

and q^ > q2 la axpacted es It is found (Fig. 1).

Froa aquations (2) and (3)1

%

« 2

______ 1 * *1

_ _ _ _ _ _ _

* 7 “ 1 ~

4 $

“ $ J^ET

(4)

la obtained.

Froa equation (4), ualng experleentsl values and previously

eveluatad fluoraacence yields,

the yield of excltetlon

energy

transfer <t>£T for tao absorption bands <$ET(500)

m

0.14

and

4> (560) « 0.33 la obtalnad. Figure 4 chows absorption and pho-

toacouatlc spectre of PE In isotropic and etretched PVA. It

la

known froa linear dlchrolsa spectra 8 that 500 na absorbing PE

chroaophorea have tendency to be oriented parallel to the

direc-tion of flla stretching, whereas long wavelength absorbing chro-

aophores ere oriented rathor perpendicular to this direction. Froa

Fig. 4, it is seen, that after noraellzatlon of all spectra at

500 na, the 560 na absorption is auch higher than PSA (curvee 1

and 2), I.e. PAS to absorption ratio is small.

(6)

stret-Fig* 4, Absorption (curve 1 and 2) and PAS (2 and 4) of P6 in i-

sotropic (1 and 2) and deformed (5 and 4) PVA film«

Absorpcja (krzywe 1 i 2) 1 PAS (2 i 4) fikoerytryny w izotropo-

wych i l i 2) i zniaksztalconych (3 i 4) PVA fllmach

ching (curve» 3 and 4). It meana that thermal

deactivation in

Chrooophore» differently oriented with re«pact to th»

anisotro-pic matrix i» different. There »r» two po»»ible explanation» of-

thi» effect. The film stretching ceu»»« not only th» chromopho*

res reorientation but also »om» deformation» of protoin part of

PE, Therefore, the chromophoree surroundings ere modified

and

plg»ent-protein interaction can be changed. The PE reorientation

can also Influence the interaction between chromophore» and

o-

riented polymer molecule*.

(7)

The result preeented ahow that two type* (absorbing et 500 nm

and at 560 nm) PE chromophores ere to «owe extent energetically

separated - becauae they have different thermal doectlvatlono of

excitation. It is in agreement with the previous observations on

their different seneitivlties on fluorescence quenchare [7] and

efficiencies of excitation energy transfer to other pigments [9],

ET from these two typee of chromophoree is also changed as a

re-eult of polymer deformation [1]«

This example [4] shows,

that from

photoacoustic spectra

yield of exoitation energy transfer between chromophores of

stro-ngly different yields of fluorescence can be obtained.

Similar

method was independently proposed by

S c h n e i d e r

Qnd

C a u f a 1

[10].

Photoacoustic spectra of PE end PC in PVA ware also measu-

red [5], In the film containing the mixture of both blliproto-

ins, the photoacoustic spectra suggest the formation of

mixed

aggregates for which the thermal deactivation of excitation

ha3

bean found to be more efficient compared to that for PE and

PC

alone.

The presence of such aggregates was supposed previously [11]

in order to explain the yield of energy transfer between

those

pigments. Fluorescence yield of PC in PVA was found

to

be

equal 0.45, it means lower, then in solution (0.56).

Figure 5 shows normalized at 670 nm measured and calculated

photoacoustic spectra of chi a, chi b and their mixture

dissolv-ed in nematic liquid crystal ( M8BA

EBBA). Calculations

were

done supposing that in mixture excitation energy is not transfer-

ed between chi a er>d chi b molecules. In calculation is was

tak-en into account that contribution to PAS of mixture of every one

pigment is proportional to

e c(l - 3>)

where«

e - molar extinction coefficient;

c - molar concentration of pigment in mixture;

(j> - yield of fluorescence of pigment celculated from

measur-ed lifetime of fluorescence.

Ae it follows from Fig. 4 measured PAS exceed calculated in a

region of predominant chi b absorption (470 nm and 660 nm). Chi b

(8)

-O CO

F

i

g

.

5

.

Ex

peri

ment

al

(

e

x

p

)

a

n

d

ca

lcul

at

ed

(c

o

l

),

e

xp

la

na

t

ion

i

n

t

e

x

t

,

phot

o

ac

oust

ic

s

pe

ct

ra o

f

c

h

i

a

+

c

h

i

b

m

i

x

t

ur

e

n

-na

t

u

ral

l

i

g

h

t

.

I

X

a

n

d

1

pa

rall

el

a

n

d

per

pend

icul

ar

c

om

pon

en

ts

o

f

l

i

g

h

t

.

Ev

ery

pai

r

o

f

a

x

p

a

nd

c

e

l

sp

ectr

a

ar

e

n

or

ma

li

ze

d

a

t

6

70

n

a

Eks

pery

ment

alne

(

e

x

p

)

i

wyl

ic

zone

(c

a

l

)

,

obj

aśni

en

ie

w

t

e

k

ś

c

i

e

,

wid

ma

f

ot

oa

k

u

st

ycz

ne

m

ie

s

z

a

-n

i

ny

c

h

i

a

c

h

i

b

n

wi

a

t

ło

n

a

tu

ra

l

ne

.

I!

i

i

r

ó

wn

ol

e

g

le

1

pro

stop

adłe

s

k

ł

ado

we

ś

w

i

a

t

ł

a

.

Każ

da

pa

ra

e

x

p

i

c

a

l

wi

dn

a

b

y

ł

a

nor

m

aliz

owan

a

d

o

6

70

n

a

(9)

gives higher contribution to PAS, then chi a, because of its

lo-wer yield

of

fluorescence. Both spectra ere normalized

at red

máximum of chi a PAS and absorption spectra.

Results obtained

suggest efficient excitation energy transfer from chi a to chi b

(“back transfer"). From the difference between both curves

at

470 nm divided by "calculated" value of signal at the same

wa-velength the yield of excitation energy transfer from chi a

to

chi b is obtained

* chi a — chi b *

°'16

Fro« the comparison of PAS obtained with illumination of

sam-ple with two polarized components of light it follows that this

ET effect Is more pronouced for perpendicular component.

It

is

an evidence, that ET is differently efficient In differently o-

rlented frections of molecules.

Strong back transfer (from chi a to chi b) Is unexpected

re-sult. But from fluorescence spectra of very high

concentration

of chi a and chi b in LC it follows that a new maximum appears

located between chi a and chi b emission bands.

PAS spectra, as well as the analysis of fluorescence

lifeti-mes of the same samples suggest that part of energy absorbed

by

chi a Soret band is migrating to chi b. From fluorescence

spec-tra follows,

that this migration occure in mixture aggregate

fo-rmed from both pigment probably with LC participation.

The usaga of polarized light to generation of

photoacoustic

aignal provides the opportunity to show,

that these

aggregates

have to be dlffer*»nty located in anisotropic matrix,

then

sepa-rated pigments.

It seems that the polarized PAS can be very

use-ful in sepparate Investigation of differently oriented groups of

chromophoreo In vivo.

Acknowledgement

We would like to acknowledge

the financial support

from

The Natural Sciences and Engineering Research Council of Canada,

and Polish Academy of Sciences (grant M. R. II.7.1.10 and Polish

Mini&tery of Science, Technology end Higher Education

(Grant

R. III.13.4.30. One of us (D.F.) wieh to thank the University du

(10)

Quebec a Troi» Rivières for e visiting professorehip in the

Ca-nt ro de Recherche en photobiophysique.

REFERENCES

[lj F r ; c k o n i a k

0.,

P i e r t k o w e k a H., S z u r »

k c « o k i

0.,

Photoeynthetica 16, 496-509 (1982).

[ 2 ] R o a e n c w e i g

A .,

Physics 46, 207-311 (1978).

[ 3 ] D u c h a r * e

0.,

T e a e 1 a r

A.,

L e b l a n c

R. M., Rev. Sci. Inat. 50 , 42-43 (1979).

[ 4 ] F r ę c k o v * l a k

0.,

L e b l a n c

R. M.,

Photo-

chem. Photobiol. (in press).

[ 5 ] F r ę c k o * * i a k

0,,

H o t c h a n d a n i

S.,

F i

V.

a i

t>

a k i

K.,

L e b l a n c

R. H., Photoeyn-

thetica 17 (1983) (in press).

[6] F r ą c k o w i a k

0.,

H o t c h a n d a n i S., L e

-b l a n c

R. M.,

S z u r k o w s k i

0.,

(to be

pu-blished ).

[ 7 ] F r 5 > c k o w i a k D. , D u t k i e w i c z 3. , G r a ­ b o w s k i

3.,

F i k a i r t a k i

K.,

M a n i k o w ­ s k i H . , P h o to e y n th e tic a y , 21-28 (1 9 7 9 ).

[8] F i k s i ń s k i

K.,

F r ą c k o w i a k

0.,

Spec-troscopy Lett. 13, 873-899 (1980).

£ 9 j F r ą c k o w i a k .

D. ,

F i k a i ń s k i

K., P i e ń

-k o w s -k a

H.,

Photobiophye. 2, 21-34 (1981).

[ 1 0 j S c h n e i d e r

S.,

C o u f a l

H.,

3. Chew. Phye.

76

, 2919 (1982).

[ l l ] F r ą c k o w i » k

0.,

G r a b o w s k i

3.,

Photo-

synthetics

402-404 (1973).

Inatltute of Phyeice

Poznan Technical University

Centre de Recherche en Photobiophyeique

Université du Qubec à Trois Rivierés

Québec, Canada

(11)

O. Frąckowiak, S. Hotchandani, R. H. Leblanc

WIDM* FOTOAKUSTYCZNE UKŁ/OÓW ORIENTOWANYCH

Spektroskopia fotoakustyczna pozwala na bezpośredni poraier

deaktywacji termicznej pobudzonych cząsteczek barwników. Metodę

tę zastosowano do badania raiessaniny fikoerytryny,

chlorofiliny

i fikocyjaniny oraz chlorofilu a i chlorofilu b. Analiza

trzymanych wid*

wskazuje. ie część energii pbsorbowanej przez

chlorofil, a w paeiaie Soreta migruje do chlorofilu b. Migracja ta

zachodzi prawdopodobnie

w

mieszanych agregatach tych

barwników,

zawierających prawdopodobnie LC.

Cytaty

Powiązane dokumenty

[r]

To, co intencjonalnie miało usprawniać pracę samorządu, stało się jej największym hamulcem. Nie zapominajmy, że samorząd jest szkołą politycznego myślenia,

addresses the type of component-based damage analysis mentioned here, but does not include many of the elements that are key in the multi-hazard analysis proposed in this paper, such

Analogicznie jak w przypadku innych zawodów medycznych usta- wodawca wskazał, że wykonywaniem zawodu fizjoterapeuty jest rów- nież  nauczanie  zawodu 

Ponadto w Archiwum Ruchu Światło-Życie znajdują się fotografi e z kard. Wojtyłą przekazane do archiwum przez Krajowe Duszpasterstwo Służby Litur- gicznej w Krakowie.

We moeten sowieso de technische kant van automa- tisch rijden niet onderschatten, maar daarnaast zijn er nog diverse andere barrières voor een grootschalige invoering, zoals

Multipeaked spectra Double peak spectra Wave spectra Direcdonal specta 1. Guedes Soares)...

Compare shape of absorption, fluorescence emission and excitation spectra, analyze interactions of perylene molecules with solvent molecules, compare