• Nie Znaleziono Wyników

In-situ characterization of walls’ thermal resistance: An extension to the ISO 9869 standard method

N/A
N/A
Protected

Academic year: 2021

Share "In-situ characterization of walls’ thermal resistance: An extension to the ISO 9869 standard method"

Copied!
11
0
0

Pełen tekst

(1)

In-situ characterization of walls’ thermal resistance

An extension to the ISO 9869 standard method

Rasooli, Arash; Itard, Laure

DOI

10.1016/j.enbuild.2018.09.004

Publication date

2018

Document Version

Final published version

Published in

Energy and Buildings

Citation (APA)

Rasooli, A., & Itard, L. (2018). In-situ characterization of walls’ thermal resistance: An extension to the ISO

9869 standard method. Energy and Buildings, 179, 374-383. https://doi.org/10.1016/j.enbuild.2018.09.004

Important note

To cite this publication, please use the final published version (if applicable).

Please check the document version above.

Copyright

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons. Takedown policy

Please contact us and provide details if you believe this document breaches copyrights. We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.

(2)

ContentslistsavailableatScienceDirect

Energy

&

Buildings

journalhomepage:www.elsevier.com/locate/enbuild

In-situ

characterization

of

walls’

thermal

resistance:

An

extension

to

the

ISO

9869

standard

method

Arash

Rasooli

a,∗

,

Laure

Itard

a

a Delft University of Technology, Faculty of Architecture and the Built Environment, OTB: Research for the Built Environment, Julianalaan 134, 2628 BL Delft,

The Netherlands

a

r

t

i

c

l

e

i

n

f

o

Article history: Received 8 May 2018 Revised 20 July 2018 Accepted 1 September 2018 Available online 22 September 2018

Keywords:

Thermal resistance In-situ measurement ISO 9869 standard Heat transfer simulation Heat flux sensor

a

b

s

t

r

a

c

t

Accurateandreliablein-situcharacterizationofbuildings’thermalenvelopeisofhighsignificanceto de-termineactualenergyuseandthermalcomfort.Inthiscontext,walls’thermalresistanceisoneofthe mostcriticalpropertiestobeidentified.Regardlessthenumerousstudiesbeingcarriedouttoaccurately measure theactualthermal resistanceofwallsonsite, theheatflowmeter methodsuggestedbythe ISO9869 standardis theone beingappliedthe most. Themethodrequires one heatfluxsensor and twothermocouplestomeasureandestimatetheaveragethermalresistanceoverasufficientlylong pe-riod.Despitetheadvantagesofthismethod,twoproblemshavebeenseeninpractice:longdurationand precision problem. Thepresent articledescribes and demonstrateshowmodificationstothisstandard methodcanimprovetheresults ofthe in-situmeasurements intermsofdurationandprecision. Sim-ulationsandexperimentshavebeenappliedtoshowtheeffectofusinganadditionalheatfluxsensor, oppositetothefirstone.Themodifiedmethodaidsinobtainingthe thermalresistancewithahigher precisioninashorterperiodoftime.

© 2018TheAuthors.PublishedbyElsevierB.V. ThisisanopenaccessarticleundertheCCBY-NC-NDlicense. (http://creativecommons.org/licenses/by-nc-nd/4.0/)

1. Introduction

Buildings areknowntobe responsibleforaconsiderableshare ofworldwideenergyconsumption[1].Apartfromtheoccupant be-havior,abuilding’sindividualenergyconsumptionishighly depen-dent on the thermo-physical characteristics of its envelope[2,3]. One of the most critical characteristics is the walls’ thermal re-sistance Rc-value, whose accuracy of determination can

signifi-cantlyinfluencetheaccuracy ofbuildings’total energy consump-tion prediction [4,5]. The accuracy of these predictions is criti-calin thesense that they are generallyusedasthe basis forthe majorityofdecisionsandpolicies [6]. Therefore,accurate estima-tionoftheactualRc-valueofthewall sectionsisknowntobe of

highimportance.Numerousexperimentalandcomputational stud-ies [7,8] haveaimed ataccurate determination of thisparameter using in-lab/in-situ and static (steady state)/dynamic (transient) approaches.Onone hand,calculationoftheRc-valuecanbequite

simplydoneaccordingtoISO6946[9],inwhichthecomputation methodsforthermalresistanceestimationbasedonthe

construc-∗ Corresponding author.

E-mail addresses: A.Rasooli@tudelft.nl (A. Rasooli), L.C.M.Itard@tudelft.nl (L. Itard).

tionofthesamplesareprovided.Theexactconstructionofthe ex-istingwallsisgenerallyunknownandthus,insuchcases,this cal-culationmethodisnotappropriate.Ontheotherhand,many stud-ieshaveshownthe differencebetweenthethermo-physical char-acteristicscalculatedorclaimedasthedesignvaluesandtheones measuredexperimentallyduringmeasurementcampaigns[10–15], implyingthenecessityofperformingmeasurementsandthe inves-tigationofthesemeasurementsforbeingaccurateenough. Regard-lessthenumerousstudiesbeingcarriedouttoaccuratelymeasure the actual thermalresistance ofwalls onsite, the heat flow me-ter method suggested by the ISO9869 [16]and ASTM 1046and 1155 [17,18] standards, which are very similar, are the ones be-ing applied the most. Despitethe advantages of these methods, twoproblemshavebeenseeninpractice:longdurationand preci-sionproblem.Thepresentarticledescribesanddemonstrateshow modifications to ISO 9869 can improvethe results of the in-situ measurementsintermsofdurationandprecision.

2. State-of-the-art

Variousmeasurement techniqueshavebeendeveloped includ-ingsteadystateandtransientmethodsappliedin-situ[19,20]and in-lab [21–27] to estimate the accurate thermal resistance, with and without relying on steady state (and quasi-steadystate)

as-https://doi.org/10.1016/j.enbuild.2018.09.004

(3)

Nomenclature

Symbols

C Specificheatcapacity(Jkg−1 K−1)

k Thermalconductivity(Wm−1 K−1)

l Wallthickness(m)

m Minimumrequiredmeasurementperiod(h) ˙

q Heatflux(Wm−2)

Rc Conductivethermalresistance(m2KW−1)

T Temperature(K)

Superscripts

∞ Fluidmedium(air)

t Time(h)

th Theoreticalvalue

Greekletters

α

Convectiveheattransfercoefficient(Wm−2K−1)



Difference

ρ

Density(kgm−3)

Indices

acc Accumulationofheat

ave Average

in Associatedwiththeinteriorsurface

out Associatedwiththeexteriorsurface 1 Associatedwiththeinteriorsurface 2 Associatedwiththeexteriorsurface

Abbreviation

HFS Heatfluxsensor

sumption.Thesteadystateandthequasi-steadystateassumptions, which are the basis of Rc-value measurements, tend to become

problematicwhen thetemperatureandheat flux fluctuationsare extreme (e.g. unsteady climatic conditions). Therefore, in caseof static-basedmethods,usuallyadditionalmodificationssuchas on-sitedatacorrectionsforlargetemperaturedrifts[28]andincluding the windvelocity effects[29] areaddressedtoimprovethe mea-surementaccuracy. Other advanced transientdata analysis meth-ods such as regression modelling and ARX-modelling have been usedto improvethereliabilityandrobustnessoftheresults[30]. Intherecentpast,applyingthemeasurementdatato mathemati-calmodelshasbecomemorepopular.Thistypeofmethodology in-cludesstochasticgreyboxmodellingandinversemodelling[31,32]. Forinstance,lumpedthermalmassmodelsandBayesianstatistical analysis of temperature and heat flux measurements, have been applied to estimate reliable thermo-physical properties of walls

[33].

In summary, there is a large variety of scientific theoretical andpractical methods available to determine the Rc-value of

ex-isting walls. However, if such determination is to be carried out in largescale (e.g.nationwide monitoringcampaigns), acommon trusted procedure is needed to be followed as a reference. For this purpose,standardshave been developed andapplied widely

[11, 12,34] to characterize the walls’ thermal resistance via in-situ measurements. The standard practices for in-situ evaluation ofwall’sthermalresistanceincludetheinternationalstandard ISO 9869[16]andtheAmericanstandardASTM1046and1155[17,18]. Besidesmalldifferencesindetails, theprinciplesofthetwo stan-dardsare thesame. In2017,these twomethods havebeen com-pared [35] in detailed in different case studies finding out the time requirements, measurement conditions, and constraints to improve the results. In thesemethods, the thermalresistance of awallismeasuredusingtwothermocouplesmountedoppositeto each other ontwo sidesofthewall anda heatflux sensor(HFS)

mountednexttothethermocoupleononeside,preferablythe in-teriorsidebecauseofhigherstabilityintemperature.Foraccurate postprocessingofthedata,informationabouttheconstruction is requiredtoincludetheeffectofheatstorageanddynamicheat ac-cumulation.Incaseofunknownconstruction,ifanon-destructive inspection is to be carried out, such information is not available

[36]andtherefore,correctionscannottakeplace.Thisisknownto significantlyinfluencetheaccuracy,leadingtoalessreliableresult. According to thestudies in which the methodhas been applied, therearetwomainproblemswhichthemethodcanbeassociated with:First,thelongdurationofthemeasurementsduetounstable boundary conditions[11,16] and second, the problemof Rc-value

precision. The duration required for the Rc-value to be reported,

fulfillingthecriteria ofISO9869[16],can be very long.This be-comesabarrierandtherefore,makesitdifficultforthemethodto beapplied ofteninpractice.The resultsoftheISO9869[16] Av-erageMethodare highlydependent onthe temperatureandheat flux circumstances. The profile ofheat flux and temperature de-terminethefinalvalue andthetimerequiredfortheconvergence tooccur.AccordingtoISO9869[16],presumingthatallconditions aretakeninto account,inorderto report anacceptable Rc-value,

themain criteriatofulfill andstop themeasurement includethe following:

1.Themeasurementperiodshouldtakeatleast72hwitha spe-cificrangeofsamplingandloggingintervals.

2.The Rc-value obtained from the last two measurement day

shouldnotdifferbymorethan5%.

3.The difference betweenRc-valuesobtained fromthe first and

lastcertainnumberofdays[16]iswithin5%.

Othercriteriasuch asheat contentanddynamicdata process-ing [37] are generallynot applicable in in-situ measurements as theexactconstructionisunknown.ThecumulativeRc-valueis

re-portedforeach day(including theaverage ofthe previous days). Asthisprocesscontinues,thecurveofthereportedRc-values

con-vergestoacertain value,whichistheaverageofthewhole mea-suringperiod,fulfillingtheaforementionedconditions.

Practicalexperiments,however,inwhichasecondheatfluxwas installed[19]ontheoppositesideoftheonerecommendedbyISO 9869haveshown thatthe two Rc-values aremeasured based on

twoheatfluxes(indoorandoutdoorwallsurface),couldconverge totwo differentfinal values(notin thesamerange), both fulfill-ingthecriteriaofISO9869.Asseenalsoinotherstudies[11,19],it mayhappenthatifthetestcontinues,thefinalconvergencevalue startsmovingtowardsanotherconvergencepoint,orthat thetwo Rc-valuesdonotconvergetothesamevalueevenafterarelatively

longperiod.Thisposesaquestionaboutwhichofthevaluesto re-portastheactualRc-value,andifitwouldnotbebettertoreport

theaverageofthetwovalues.

According to theISO 9868 [16]AverageMethod, the Rc-value

ofawall,basedonmeasurementsof



T(thesurfacetemperature gradient),q˙(theheatflux),andt(thetimeinterval),canbederived asfollows: Rc= m  t=0



Tt/ m  t=0 ˙ qt (1)

Accordingto(1),theinstantaneousRc-valueateachsideis

dif-ferentbecausethetwo instantaneousheat fluxesq˙t atbothsides

ofthewall vary, thanks tothe thermalmass(resulting inq˙acc in

Fig. 1), andtemperature and heat flux fluctuations on two sides ofthewall.However, inlongterm, basedonenergyconservation, thesummationof

(

q˙t

)

1and

(

q˙t

)

2areequal.AccordingtoISO9869 [16],such summationistobe doneinalongenough timeperiod (atleast72h forlight elementsandmorethanaweek forheavy

(4)

Fig. 1. General configuration of ISO 9869 standard measurement with one extra HFS added . The two R c -values based on each HFS differ and in short term converge to different values.

elements[16]).Inthiscase:

m  t=0



˙ qt



1= m  t=0



˙ qt



2 (2)

Thevalidityof(2)dependshighlyontheconstruction,time pe-riod, and the boundary conditions (climatic conditions). In short term, by measuring theheat flux on eitherside of thewall, one mayfinda differentRc-valuethan bymeasuring theheatflux on

theopposite side.The two Rc-valuesare expectedtoconvergeto

thesamefinalvalueoveralong-enoughperiods(seeFig.1):

Rc1= m  t=0



Tt/ m  t=0



˙ qt



1=Rc2= m  t=0



Tt/ m  t=0



˙ qt



2 (3)

whereRc1andRc2aretheRc-valuesobtainedbasedoncumulative

heatfluxattheinteriorandexteriorsurface,respectively. The main aim of thisstudy is to address the two aforemen-tioned problems (long period and precision) in simulations and inpractice, andto show the effectiveness ofusing an additional HFS in ISO9869 [16]Average Method (equivalent to Summation MethodinASTMC1046andC1155[17,18]),ontheoppositesideof thefirstone,andmeasuringtheheatfluxinbothsidesinsteadof onlyone (seeFig.1).Thefocusisstrictly laidontheusageofthe standardmethodbecauseofitsadvantageasbeingthemost well-knownand applied (due to its simplicity) reference method. Ac-cordingly,incontrastwithotheraforementionedmethods,thereis neithertheneedforapriorknowledge(e.g.transferfunctions,grey boxmodelling,advancedmathematics),nora newtype of equip-ment(e.g.heater, hotbox).The resultsofthispapercan beeasily implementedinASTMC1046andC1155aswell.

The further organization of this article includes the research set-upinSection 3,followedby thesimulations andtheir results inSection 4. Later, the experiments and their results are shown inSection5 andfromallresults anddiscussions,conclusionsare drawninSection6.

3. Researchset-upandmethod

The set-upofthisresearch consistsoftwodifferentphases.At first,finiteelementsimulations are carriedout toinvestigateand demonstrateondifferenttypesofwallsthedifferencebetweenthe resultsobtainedfromtheheatfluxateachsideofthewalls.In ad-dition,the resultsobtained using an average Rc-value as defined

below and the advantage of reporting this value instead of the twoothervalues(Rc−inandRc−out)inspecificcasesvaluesare

dis-cussed.

Rc−a v e=(Rc−in+Rc−out)/2=



m  t=0 Tt/ m  t=0



˙ qt



1+ m  t=0 Tt/ m  t=0



˙ qt



2





2 (4) Secondly,experimentshavebeencarriedouttoshowthe ben-efit of measuring the heat flux at two sides in practice. During thesimulationsandexperiments,thetwoproblems(precisionand long monitoring period) are addressed and the benefit of two-sidedmeasurementsisillustrated.

4. Heattransfersimulationsandresults

Forcomputationalinvestigationanddemonstration,heat trans-fer simulations have been carried out using COMSOL Multi-physics® 5.3a [38]. This software applies finite element method (FEM)tosimulateheattransferproblems.Intransientheat trans-fer, issues such as homogeneity and the position of insulation affects the heat flows significantly [39]. Accordingly, for sake of demonstration,fivetypologiesofwallshavebeenstudied:Two ho-mogeneous walls, three insulated walls(insulationplaced on the inside,inthemiddle,andontheoutside),andafour-layeredcavity wall.Thepropertiesandconstructionofthefivetypesaredepicted inFig.2andsummarizedinTable1.

Thewalls’ boundaryconditionsforthesimulationsincludethe following:

- Initial Condition: initial temperature 291 K for all solid do-mains.(averageofindoorandoutdoortemperature).

- Convectiveheat transfer coefficient 25 W m−2 K−1 with out-doorair(lumpedconventionandIRradiation).

- Convectiveheattransfercoefficient7.5Wm−2 K−1 withindoor air(lumpedconvectionandInfraredradiation).

- Insulationonalllateralsides(1Dheattransferassumption). - Indoortemperature:winterandsummertemperatureof293K

and296K(whitenoiseof±2Kamplitude).

- Outdoortemperature:referenceClimateYeardeBilt64-65(one ofthetypicalclimateyearsintheNetherlands).

(5)

Fig. 2. Five typologies modelled in the simulations- All the walls are exposed to forced convection to two air temperature profiles for 8760 h. Table 1

Summary of the five wall types, their dimensions, and their thermal properties.

Typology Layer/property l (m) k [ W m −1 K −1 ] ρ [ kg m −3 ] C [ J k g −1 K −1 ] R th c [ m 2 K W −1 ]

Type 1: Homogeneous a: Brick 0.5 0.9 20 0 0 840 0.55

b: Concrete 0.5 1.8 2400 880 0.27

Type 2, 3 and 4: Brick and insulation Brick 0.2 0.9 20 0 0 840 4.00

Polyurethane 0.08 0.021 35 1320

Type 5: 4-layer cavity wall with insulation and exterior brick facade Facing brick 0.10 0.900 2087 87 5.31 Air cavity 0.04 k = k (T) ρ= ρ(T) C = C(T)

Polyurethane 0.10 0.021 35 1320 Wood-cement 0.09 0.350 1250 1470

- Solarradiation,exceptin4.4,accordingtothestandard(theuse ofartificialscreening),isnotincluded.

- In 4.4solar radiation is takeninto account in late spring pe-riodonlytoshowitsnegativeinfluence(inotherperiodsofthe Dutch climate there is no long-termstrong solar radiation to considerablyaffectthemethod).

- RainandsnowareneglectedasexplicitlymentionedintheISO 9869[16].

Softwaresettingsincludetime-dependentstudy,fine,finer,and extra finemesh, stricthourly time step,andbackward differenti-ation formulatimestepping [38].Allsimulations havebeendone foroneclimateyear(hourlytemperaturedata).Thecalculationof theRc-valuefromthesimulateddatahasbeendonefortheDutch

heatingseason(winter,beginningofspring,andendoffall)to as-surethereliabilityoftheresults.TheresultspresentedinSections 4.1–4.3 belong to winterseason (February).As mentioned inthe standard,theperformanceofthemethodispoorduringthe sum-merperiodandtheminimumtemperaturedifferencebetweentwo sides should be 5 K.Accordingly, thisperiod is not investigated. ThedurationofthecalculationofthecumulativeRc-valueisupto

thetimewhenthetest’sconvergencecriteriahavebeenmet. For each typology, the wall is simulated for one year with hourlyairtemperatures.Theindoorandoutdoorheatfluxis eval-uated at two surface cut-points in the middle of each side of the wall, where the HFSs and the thermocouples are suppos-edly mounted. The output isanalysed according tothe ISO9869

[16]AverageMethodindifferentperiodsoftheyeartocheckthe accuracyandprecision.Every24h,thetwohourlycumulativeRc

-values(foreachside)andtheiraveragearereported,using(1).This process continues fora long enough periodfor a perfect conver-gence ofthe three graphs to one actual value (as expected from

Table1),regardlessofthemitigationoftheISO9869[16] conver-gencecriteria(whichhappensearlier).Finally,theminimumtime requiredfortheISO9869[16]criteriatobemetarereportedand comparedinallcases.

The six modelled walls are categorized as homogeneous and heterogeneous walls. The heterogeneous ones are divided into symmetrical andasymmetrical categories.The results forthe Rc

-value calculation according to (1) are shown for each category.

Inall figures, solid orange andsolid blueare Rc-valuesbased on

inside (Rc-in) and outside (Rc-out) heat flux respectively and the

dashed black refers to the average Rc-value (Rc-ave). The arrow

givesthepointwhereconvergenceofRc isachievedthequickest,

accordingtoISO9869criteria.

4.1. Homogeneouswalls(types1aand1b)

Thefirsttypologyisthehomogeneouswall(type1,seeTable1). Forsakeofsimplicity,minorheterogeneitiesareneglected(e.g.the mortar joints are considered the same as brick because of their similarthermal properties).TheRc-valuesobtainedfromtwo

ho-mogeneouswallsare plottedinFig.3.Forthedayofconvergence anddeviationfromtheoreticalvalue,seeFig.7.

Asseeninbothfigures,incaseofhomogeneouswalls,thetwo Rc-valuesconvergetothesamevalue,withasimilarspeed.Mostly,

theseprofileshaveaquasi-symmetricshaperelativetoeachother. Therefore,the average of thesetwo will convergequicker to the actualRc-value(Rcth).Thetemperatureandheatfluxdisturbances

oneach sideinfluence theresultson eitherside whereasthe av-erageofthe twoRc-valuesshowshigherstability.Forinstance,in

therightgraph,onewouldfindtheRc-valueatthe4thdayof

mea-surement,usingtheaverageRc-value.UsingtheRc-valuebasedon

heatfluxoneitherside,morethan11daysisneededtofulfillthe ISO9869[16]criteria(seealsoFig.7).Inotherperiodsoftheyear, thisdurationmaybemuchlonger(seeSection4.5).

4.2.Heterogeneouswalls(types2,3,4,and5)

Four heterogeneous wallsare modelled. The two first models are two-layered walls with one layer of brick and one layer of polyurethaneinsulation,once attheinterior(type4)andonceat theexterior (type2)side. Thethird wallisa cavitywall(type5) andtheforthoneissimilartothefirsttwo,withtheinsulationin themiddle (type3). The wallsare presentedin a differentorder thanthenumberoftheirtypes,duetotheirbehavior.

4.2.1. Heterogeneousasymmetricalwalls(types2,4,and5)

The two two-layered walls (insulation at inside and outside) and the four-layered cavity wall are presented here as

(6)

non-Fig. 3. R c -values obtained from each of two homogeneous walls made from brick (left) and concrete (right). The average R c -value converges quicker to the final value.

Fig. 4. R c -values obtained from each of the types 2 and 4: a homogeneous brick layer with one layer of insulation on the outside (left) and on the inside (right). The R c -value of the side having insulation converges much quicker to the actual value (R cth ) in both cases.

homogeneousasymmetrical samples.Although types2 and4are notexactlyrealistic (inpractice,a plasterlayercoversthe insula-tion),theyaremodelledforsakeofdemonstrationofthe hypoth-esisinsimilarconfigurations.InFig.4,theinsulationonthe exte-riorsurface,type2(left),makestheexteriorRc-valuesgraphmuch

morestableandconvergingveryquickly, whereasforthe caseof type4, havingtheinsulation on theinteriorside (right), theone fromthe interior side is more stable and converges quicker. Us-ingtheheatflux atthesideclosertotheinsulation inthesetwo cases results therefore in finding the Rc-value in a considerably

shorteramountoftime.Allgraphsconvergeintheendtoavalue of4m2 KW−1,asexpectedfromtheconstruction(Table1).

The result oftype 2(insulation atthe outsidesurface) shows theopposite ofwhat isrecommendedin ISO9869,installingthe HFSatthesidewithmorestabletemperature(indoor).Inthiscase, onewouldneedmuchlongertimetofindtheRc-value.Thereason

forthiscan bereferred to the fact thatthe heat flux attheside withinsulation ismuch morestablethanatthe sidewithout.As thetemperature gradient intwo graphs is common, the stability ofthe heat flux can determineat whichside the Rc-value graph

ismorestable,leadingtoaquickerconvergenceandtherefore ear-lierestimationoftheRc-value.Therefore,incaseofonlyoneHFS

available,itwouldbe bettertoplacetheHFSontheoutdoor sur-faceofthewallthanontheindoor side.Thishowever,cannotbe knowninadvanceandcanonlybedetectedbyusingtwoHFSs.

The cavity wall isthen analysed. This construction belongsto anexistingwallinalabinLeuven,Belgium.InFig.5,theresultof theRc-valuesimulationsofthecavitywallispresented.The

theo-reticalRc-valueis5.31m2KW−1asalsoreportedin[40](Table1).

Theaircavityismodelledwithanequivalentthermalconductivity, consideringthethermalresistanceoftheairlayer(0.180m2KW−1

asestimatedby [40] and[41])to includeconduction,convection, andIRradiation).

Inthe modelled cavitywall,similar to type 2(insulation out-side), measuring the HFS at the outer surface of the wall leads toa quickerestimation ofthe Rc-value.This,similar totype2,in

termsoftimeefficiency,isincontrastwithwhattheISO9869 rec-ommends regardingthe placement of the sensors atthe interior side. This example is underlining again the importance of using two heatflux meters atbothsidesof thewall foraquicker gain oftheRc-valuewiththesamelevelofaccuracy.

4.2.2. Heterogeneoussymmetricalwalls(type3)

Thesymmetry isformedbyplacingthe insulationlayerinthe middleofthewall inbetweenthetwo bricklayers. InFig.6,the result for the simulation of the symmetrical heterogeneous wall (type3)isshown:

Asseen inFig.6,the interiorRc-valueconvergesmorequickly

thantheonefromtheoutdoor.Thisisduetothefactthatthe ef-fect of the insulation on the stability of the heat flux is divided betweenthe two surfaces.Therefore, thestability ofthe temper-ature plays the dominantrole of determining which side results in a quickerand morestable Rc-value. Thus, the indoor side Rc

-value convergesmorequicklyto theactual value of4m2 KW−1

(7)

Fig. 5. R c -values obtained from type5: 4-layered cavity wall consisting of (from interior to exterior) wood cement, polyurethane, air, and facing brick. The outdoor R c -value has converged much quicker.

Fig. 6. R c -values obtained from the type-3 wall: two homogeneous brick layers connected via insulation in the middle. The effect of the insulation is divided and thus, the side with more stable temperature converges earlier.

Fig. 7. Minimum required time for each typology to fulfill ISO 9869 convergence criteria. The case of which graph converges earlier in case of unknown construction is unpredictable. Inaccuracies are reported in terms of percentage deviation form theoretical value.

4.3. Minimumrequiredconvergencetimes

Forsakeofcomparison,theresultsofthesimulationsaccording to the ISO9869 [16]criteria are summarized inFig. 7. The con-vergence time according toISO 9869are assessed andcompared andineachcase,andtheinaccuracyofthemeasuredRc-value(in

termsofdeviationfromthetheoreticalvalue)isreported: As conveyed in Fig. 7, foran unknown construction, it is not possible to predict in advance aboutwhich graph will converge

earliertothe final value.In types1a,and1b,the Rc-ave has

con-verged respectivelyin halfandone-third of therequired time (if eitherofthetwo heatfluxeswere used).In types2and5,Rc-out

hasconvergedmuchmorequicklythanRc-in(inlessthanonesixth

ofthetimeintype2)whereasintypes3and4,inagreementwith thestandardmethod,theRc-in hasconvergedmuchmorequickly.

However,note thatall valuesreportedfulfilltheconvergecriteria ofISO9869,asdescribedinSection2.

(8)

Fig. 8. Parameters influencing the convergence of R c -graph. Solar radiation (left) and high thermal mass (right) have negative effects (in grey) while in the absence of these effects, the R c -graphs are more stable and converge earlier.

4.4.Parametersinfluencingtheconvergencetimeandstability

Generally,two differentaspects affectthestabilityand conver-genceoftheRc-value graph:theconstruction (e.g.thermalmass)

andtheboundaryconditions(e.g.solarradiation).InFig.8,two ex-amplesareshown.The firstgraph(left)isaconcretewall(type1) exposed tosolar radiation(which wasexcluded inthe preceding examples). The presence (in solid anddotted black) andabsence (in orangeand blue) of solarradiation is shown to compare the stabilityandconvergenceoftheRc-graph.Itisalsorecommended

inthe standard to use artificialscreening orto exclude the day-timemeasurementsfromtheresultsinlowthermalmasssamples

[16].Thesecondgraph(right)showstheeffectofthermalmasson thetime andqualityoftheconvergence.Incaseoflower thermal mass(l= 0.2m), thegraph(insolid anddottedblack) converges muchmorequicklyandtheresultsaremorestablethanincaseof highthermalmass(l=0.5m)(inorangeandblue).

4.5.Rc-valueprecisionproblem

TheuncertaintyofsimulationsaccordingtoISO9869shouldbe around atleast 10% (except temperatureand heat flow variation error,othererrorsconcernoperational,equipment,andcalibration error which do not concern simulations). In Fig. 7, all inaccura-cies(in terms of deviationfrom theoretical value) and all preci-sions (in terms of deviation of the Rc-values) were below 10 %.

Howeverincertaintypesofconstruction,duringcertainperiodsof theyear,the two Rc-values converge, fulfillingthe criteriaofISO

9869(mentionedinSection2), totwodifferentvalueswhich dif-ferbymuchhigherthan10%.Thishappensmostoftenin homoge-neouswallswithhighthermalmasswherestabilityoccursatthe samelevel on two sides (see Fig. 9). Ifthe extraction ofthe Rc

-valuecontinues,thetwovaluestakeaverylongtimetoreachthe samevalue,theactual Rc-value,(seetherightpartofFig.9).This

isproblematicbecausebothvaluesmaybereportedwhilenot be-ingwithintheexpectedprecisionrange.Insuchcases,itwouldbe advantageoustousetheaverageRc-value,asitisinthecommon

bandwidthofthetwouncertaintiesanditisclosertotheexpected value.

InFig.9,twocasesareshowninwhichtheRc-valueshave

con-verged to two different values, fulfilling the ISO9869 criteria at thesametime,butdifferingbymorethan10%inprecision.These walls(type 1:0.5m brick on the left and 0.5 m concrete on the right) are the same walls shown before, in a different period of time(beginning offall). The issuehasalso beenoccasionally ob-served inthe other typesin different periods when temperature andheat flux fluctuations are extremeor when the temperature

gradient ofthe two surfacesbecomessmall.The arrow givesthe pointwhereconvergenceofRc isachieved,accordingtoISO9869

criteria.

As seen in Fig. 9,the Rc-in andRc-out graphs convergeto

dif-ferentvaluesatthesameday,both fulfillingthestandardcriteria beforereaching thefinal actualvalue. Forthe brickwall Rc-in has

aninaccuracyof7.3%and10%forRc-out.Bothvaluesdifferbymore

than10%.FortheconcretewallRc-inhasaninaccuracyof11%while itis7.4%forRc-out whichiswithinan acceptablerange.Both

val-uesdiffer bymore than10%. The averageof thesetwo graphsin both cases converges much earlier (6th day vs 20thday for the brickwalland4thdayvs15thdayfortheconcretewall),withan inaccuracyoflessthan4%.Therefore,usingtheaverageRc-valueis

asuitablealternativetowaitingforthetwographstomeetatthe actualvalue(farbeyondthetimetosatisfytheconvergence crite-riaofISO9869).Theoccurrenceofthisproblemisnotknown be-forehand,duetotheunknownconstruction andunknown bound-aryconditions.Therefore,inthesecases,itisalsoofhighbenefit tomeasuretheheatfluxatbothsidesandiftheprecisionproblem isobserved,theaveragevalueisreportedinsteadoftheothertwo. Toeven increase theaccuracy ofthemeasurement, one can con-tinuethemeasurement oftheaveragevalue forafew daysmore afterachievement ofthe ISO9869convergence criteria.This will stillbeshorterthanusingtheRC-invalue,andmoreaccurate.

5. Experimentalsetupandresults

Experimentshavebeencarriedoutontwocasestudywalls,to show theeffectivenessofperforming two-sidedmeasurements of heat flux. The first wall is similar to type 3 (insulation inside -theconstructionisestimatedfromtheappearance).TheRc-valueis

claimedtobe3.5m2KW−1accordingtothevaluereportedinthe

building permit. The second case is type 1 (homogeneous brick) with the Rc-value estimatedbased on construction (0.21 m wall

made ofDutch brickwith thermal conductivityof 1.2 W m K−1

[42])asbeing0.175m2KW−1.

Two t-type thermocouples (accuracy 0.5 °C) and two HFP01 HFSs(accuracy5%)by HuksefluxThermalSensors[43] havebeen mountedontwosidesofthewall.Thefacesofthesensorsare cov-eredbypapertapewhoseemissivityisclosetotheonefromthe surfaceofthewall.Thermalimaging(usingFLIRE5thermal cam-era)hasbeenemployedatfirsttofindthespotwhichis represen-tative forthewhole wall andsecond, tocheck ifthe emissivity’s of the sensors’ surfaces are the same asthe whole wall. This is toavoiddifferentradiationheattransfer,asalsorecommendedby ISO9869.AsexplicitlynotedinISO9869[16]toprotectthe exte-riorsurface(e.g.byartificialscreening),theexteriorsurfaceofthe

(9)

Fig. 9. The problem of R c -value precision: two different R c -values (left) are obtained instead of one, both fulfilling the criteria of ISO 9869. The average R c -value is closest to the actual one which the two graphs will converge to, after a very long time (right).

Fig. 10. From left to right: the insulation box covering the HFS and the thermocouple outside, the interior side HFS and thermocouple covered with same emissivity tape, IR thermography of the exterior and interior surfaces.

wall iscoveredwitha coveringboxto minimizethe temperature andheat fluxperturbations. The boxis asquare of60 × 60cm2

madefromPolystyreneandcovered withreflectiveshieldto pro-tectthesensorsfromsolarradiationdisturbances.Theeffectofthe boxhasbeentestedbeforehandtoensurelimitingthetemperature andheatfluxnoise.Theratiobetweentheareaunderthebox,the area of thesample, andthe thicknessof thesampleis such that the box covers a considerable surface around the sensors while minimizing the3-D heattransfereffects.In caseofhighlevelsof solarradiations and/or largersurfaces,larger protectionsmust be used.Measurementsofheatfluxandtemperaturehavetakenplace everysecond withOMEGA SQ2010dataloggerandthehourly av-erageshavebeenlogged.Allequipmenthasbeencalibratedbythe providers before the measurements. In Fig. 10, the experimental setupaswellastheIRthermographyimagesareshown.

Measurementshavebeen carriedout forlong enoughperiods untilthetwoRc-graphsconvergetothesamefinalvalue.The

out-comesofthemeasurementsarepresentedinthefollowingsection.

5.1. Casestudy1

Forthe first case study,measurements have beencarried out for16 days. The cumulative Rc-value has been calculatedby the

endofeach dayusing(1),convergingtoafinalvalue. Theresults oftheRc-valuesareplottedinFig.11.

MeetingthecriteriaofISO9869,theinteriorRc-valuehas

con-vergedto3.55m2 KW−1 atthe5thdaywithadepartureof1.4%

comparedtothevaluereportedintheEPCvaluereportbythe con-structor.AccordingtothecriteriaofISO9869onlytheinteriorRc

(10)

Fig. 11. R c -value measurements from case study 1. The indoor heat flux has resulted in the earlier convergence of the R c -value graph. Location: Delft, Netherlands, Apr 2018.

Fig. 12. R c -value measurements from case study 2: two different R c -values are obtained, fulfilling the criteria of ISO 9869. Location: The Hague, the Netherlands, Oct 2014. longertimeasithasn’tmettheISO9869criteriaafter16days.

De-spitenotmeetingthestandardcriteria,thethreegraphshave con-vergedtothefinalvalueof3.5m2 KW−1withanerrorofwithin

5%.

5.2.Casestudy2

Duringotherexperiments[44],acasestudy(casestudy2)ofa Dutchhomogeneousbrickwallhasbeenexamined.The measure-menthasbeencarriedoutfor14daysandtheRc-valueshavebeen

calculatedbytheendofeachdayusing(1).TheresultsoftheRc

-valuesareplottedinFig.12.

Theproblemofprecision(findingtwovalidRc-values)hasbeen

observedinthiscase.ThetwointeriorandexteriorRc-valueshave

convergedby a convergenceof within 2.5% at the 14thday. The two obtained Rc-values are 0.19 m2 K W−1 and0.16 m2 K W−1

respectively, leading to an inaccuracy of 8.6% in both cases. The averageRc-valuehowever,hadconvergedearlierto0.17m2KW−1,

whichisclosesttothetheoreticalvalue(inaccuracyof2.9%). Insuchcases,accordingtowhathasbeenshownsofarandthe mathematicsdemonstrated,itisrecommendedtousetheaverage Rc-valueasitseemstobethemostreasonablesolution.Especially

inthiscase,becausethewallishomogeneous,theaverageRc-value

hasconvergedmuchbetterthantheothertwowhichwillrequire longertimetomeetattheactualvalue.

6. Conclusion

Twoproblemsassociated within-situmeasurements basedon ISO9869[16]havebeenassessed:durationandprecision.The

ad-vantage ofusing two sides’ differentheat flux time seriesin Rc

-value measurements was demonstrated through simulations and measurements.Fivetypologiesofwallshavebeenmodelled, show-ingtheadvantageofmeasuringtheheatfluxatbothsidesinstead ofonlyone.Basedontheresultsofthehomogeneouswalls,itcan be concluded that due to the symmetry of the Rc-value graphs,

the average Rc-value will be closer to the final value and

there-fore,more reliable than eitherof the two. Accordingly, the mea-surementperiodcan bereducedwithoutcompromisingthe accu-racy. The average Rc-value contributesto solving the problemof

Rc-value precision aswell. In this case, the average Rc-value has

shownto convergemuchquicker(up to10 timesquicker)to the actual value. While having the sameaccuracy, the averaging will avoidfindingtwo differentvalueswhichare out of10% precision range.

Incaseofaheterogeneouswall,thestabilityofheatflux plays thekeyroleintheconvergenceoftheRc-valuegraph.Theindoor

temperatureisgenerallymorestablethantheoutdoorand there-fore,ISO9869impliesplacingtheHFSintheindoorside.However, asexplainedinSection 4.2,theeffectofheatfluxismorecritical thantheonefromtemperature.Forinstance,theeffectofoutdoor insulation onthe stabilityoftheheat flux can becomedominant andthereforeovercomethenegativeeffectfrominstabilityofthe outdoortemperature.Accordingly,incaseofaninsulationlayeron exteriorsideofthewall,orinacavitywall,itmayhappenthatthe outdoorheatfluxwouldresultinamuchmorestableandquicker Rc-valuewhereastheinteriorheatfluxconvergesmuchlater.

In summary,it ishighly recommendedthat in the in-situ Rc

-value characterization of unknown constructions, the heat flux wouldbemeasured onbothsidesofthesampleratherthanonly

(11)

one.Thisway,threegraphsaregenerated:Rc-valuesbasedon

in-sideheatflux,outsideheatflux,andtheaverageRc-value.Incase

one of the Rc-in and Rc-out is more stable and converges earlier

than the other, the Rc-value from that side should be reported.

Incaseboth graphsare instableandsymmetrical, mostly happen-ing inhomogeneous samples,theaverage ofthetwo (Rc-ave) will

convergemuchquickeranditistheclosesttotheactualRc-value.

Thisway,thetwomentionedproblemsaretackled.Observingboth Rc-graphsalsoprovidesqualitativeinformationaboutthepossible

constructionofthewall(e.g.homogeneous,insulationinside,etc.) Theadditionalcostsassociatedwiththesuggestedmodification aregenerallynot high(roughly5%–20%additiontothetotalcost). Thiscostdifference(anadditionalHFS)canbecompensatedbythe factthat byapplyingthesecond HFStotheset,thefinalRc-value

canbeobtainedmorequickly,leadingtoshortermeasurement pe-riods.A short measurementperiod becomesadvantageous by al-lowingmoresamplestobemeasuredinthesameperiodoftime.

References

[1] L. Belussi , L. Danza , I. Meroni , F. Salamone , Energy performance assessment with empirical methods: application of energy signature, Opto-Electron. Rev. 23 (1) (2015) 85–89 .

[2] P. van den Brom , A. Meijer , H. Visscher , Performance gaps in energy con- sumption: household groups and building characteristics, Build. Res. Inf. 46 (1) (2018) 54–70 .

[3] Y. Yang , Innovative Non-Destructive Methodology for Energy Diagnosis of Building Envelope, Bordeaux, 2017 .

[4] A. Ioannou , L. Itard , Energy performance and comfort in residential buildings: sensitivity for building parameters and occupancy, Energy Build. 92 (2015) 216–233 .

[5] D. Majcen , L. Itard , H. Visscher , Actual and theoretical gas consumption in Dutch dwellings: what causes the differences? Ener gy Policy 61 (2013) 460–471 .

[6] F. Filippidou, N. Nieboer, H. Visscher, Effectiveness of energy renovations: a reassessment based on actual consumption savings, Energy Efficiency (2018) 1–17, doi: 10.1007/s12053- 018- 9634- 8 .

[7] M.J. Jiménez , H. Madsen , K.K. Andersen , Identification of the main thermal characteristics of building components using MATLAB, Build. Environ. 43 (2) (2008) 170–180 .

[8] O. Gutschker , Parameter identification with the software package LORD, Build. Environ. 43 (2) (2008) 163–169 .

[9] B. ISO , 6946: 2007 Building Components and Building Elements—Thermal Resistance and Thermal Transmittance—Calculation Method, British Board of Agrément tel, 1923 .

[10] P.G. Cesaratto , M. De Carli , A measuring campaign of thermal conductance in situ and possible impacts on net energy demand in buildings, Energy Build. 59 (2013) 29–36 .

[11] Baker, P., Technical paper 10: U-values and traditional buildings-In situ mea- surements and their comparisons to calculated values. 2011.

[12] P. Biddulph , V. Gori , C.A. Elwell , C. Scott , C. Rye , R. Lowe , T. Oreszczyn , Inferring the thermal resistance and effective thermal mass of a wall using frequent temperature and heat flux measurements, Energy Build. 78 (2014) 10–16 .

[13] C. Flood , L. Scott , C. Architects , In Situ Thermal Transmittance of Case Studies in Dublin, 2016 .

[14] C. Peng , Z. Wu , In situ measuring and evaluating the thermal resistance of building construction, Energy Build. 40 (11) (2008) 2076–2082 .

[15] Baker, P., Technical paper 2: in situ U-value measurements in traditional buildings–preliminary results. 2008.

[16] I. ISO , 9869: Thermal Insulation—Building Elements—In-Situ Measurements of Thermal Resistance and Thermal Transmittance, International Organization for Standardization, Geneva, 2014 .

[17] C. ASTM , 1046-95 (Reapproved 2001): standard practice for in-situ measure- ment of heat flux and temperature on building envelope components, in: An- nual Book of ASTM Standards, 2001, p. 4 .

[18] C. ASTM , 1155-95 (Reapproved 2001): standard practice for determining ther- mal resistance of building envelope components from the in-situ data, Annual Book of ASTM Standards (2001) 4 .

[19] A. Rasooli , L. Itard , C.I. Ferreira , A response factor-based method for the rapid in-situ determination of wall’s thermal resistance in existing buildings, Energy Build. 119 (2016) 51–61 .

[20] X. Meng , T. Luo , Y. Gao , L. Zhang , Q. Shen , E. Long , A new simple method to measure wall thermal transmittance in situ and its adaptability analysis, Appl. Therm. Eng. 122 (2017) 747–757 .

[21] K. Martín , I. Flores , C. Escudero , A. Apaolaza , J.M. Sala , Methodology for the calculation of response factors through experimental tests and validation with simulation, Energy Build. 42 (4) (2010) 461–467 .

[22] J.M. Sala , A. Urresti , K. Martín , I. Flores , A. Apaolaza , Static and dynamic ther- mal characterisation of a hollow brick wall: tests and numerical analysis, En- ergy Build. 40 (8) (2008) 1513–1520 .

[23] B. Yesilata , P. Turgut , A simple dynamic measurement technique for compar- ing thermal insulation performances of anisotropic building materials, Energy Build. 39 (9) (2007) 1027–1034 .

[24] K.N. Agarwal , V.V. Verma , A quick method of measuring thermal conductivity and thermal diffusivity of building fabrics, Build. Sci. 2 (2) (1967) 165–172 .

[25] A.J. Robinson , F.J. Lesage , A. Reilly , G. McGranaghan , G. Byrne , R. O’Hegarty , O. Kinnane , A new transient method for determining thermal properties of wall sections, Energy Build. 142 (2017) 139–146 .

[26] ISO, B., 8990: 1996, Thermal insulation. Determination of steady-state thermal transmission properties. Calibrated and guarded hot box, BSI, ISBN 0, 1996. 580(26826): p. 8.

[27] G. Baldinelli , A methodology for experimental evaluations of low-e barriers thermal properties: field tests and comparison with theoretical models, Build. Environ. 45 (4) (2010) 1016–1024 .

[28] P.G. Cesaratto , M. De Carli , S. Marinetti , Effect of different parameters on the in situ thermal conductance evaluation, Energy Build. 43 (7) (2011) 1792–1801 .

[29] F. Wang , D. Wang , X. Wang , J. Yao , A data analysis method for detecting wall thermal resistance considering wind velocity in situ, Energy Build. 42 (10) (2010) 1647–1653 .

[30] Deconinck, A.-H. and S. Roels, Comparison of characterisation methods deter- mining the thermal resistance of building components from onsite measure- ments. Energy Build., 2016. 130: p. 309–320.

[31] A.-H. Deconinck , S. Roels , Is stochastic grey-box modelling suited for physical properties estimation of building components from on-site measurements? J. Build. Phys. 40 (5) (2017) 4 4 4–471 .

[32] A.-H. Deconinck , S. Roels , The as-built thermal quality of building components: characterising non-stationary phenomena through inverse modelling, Energy Procedia 132 (2017) 351–356 .

[33] V. Gori , V. Marincioni , P. Biddulph , C.A. Elwell , Inferring the thermal resistance and effective thermal mass distribution of a wall from in situ measurements to characterise heat transfer at both the interior and exterior surfaces, Energy Build. 135 (2017) 398–409 .

[34] A. Ahmad , M. Maslehuddin , L.M. Al-Hadhrami , In situ measurement of ther- mal transmittance and thermal resistance of hollow reinforced precast con- crete walls, Energy Build. 84 (2014) 132–141 .

[35] I.A. Atsonios , I.D. Mandilaras , D.A. Kontogeorgos , M.A. Founti , A comparative assessment of the standardized methods for the in-situ measurement of the thermal resistance of building walls, Energy Build. 154 (2017) 198–206 .

[36] G. Desogus , S. Mura , R. Ricciu , Comparing different approaches to in situ mea- surement of building components thermal resistance, Energy Build. 43 (10) (2011) 2613–2620 .

[37] K. Gaspar , M. Casals , M. Gangolells , A comparison of standardized calculation methods for in situ measurements of façades U-value, Energy Build. 130 (2016) 592–599 .

[38] COMSOL Multiphysics® v. 5.2. www.comsol.com . COMSOL AB, S., Sweden. [39] D.M.S. Al-Homoud , Performance characteristics and practical applications of

common building thermal insulation materials, Build. Environ. 40 (3) (2005) 353–366 .

[40] A.-H. Deconinck , Reliable Thermal Resistance Estimation of Building Compo- nents from On-Site Measurements, KU Leuven, Belgium, 2017 .

[41] B. Kersten , J. van Schijndel , modeling the heat exchange in cavities of building constructions using COMSOL multiphysics®, in: Excerpt from the Proceedings of the 2013 COMSOL Conference in Rotterdam, Rotterdam, Netherlands, 2013 .

[42] ISSO, 60, U en R-waarden van bouwkundige constructies, ISSO publicatie, 2005 .

[43] Hukseflux Thermal Sensors BV, w.h.c., Delft, The Netherlands.

[44] A. Rasooli , L. Itard , C.I. Ferreira , Rapid, transient, in-situ determination of wall’s thermal transmittance, REHVA Eur. HVAC J. 53 (2016) 16–20 .

Cytaty

Powiązane dokumenty

The results show that the temperature of pseudo equilibrium state of these studied batteries are in accordance with the temperature related in the literature,

The results show (1) temperature variations of up to 200 K because of lighting conditions (Sun aspect angle); (2) differences of about 100 K in average CCR temperatures as a

Niestety w tego typu korespondencji rzadko padały tematy obrazów czy bardziej szczegółowe informacje o osobie malarza, częściej pojawiały się nazwiska wy- konawców

Bez zastrzeżeń natom iast przyjm ujem y następujące powiedzenie : „w ogóle uznać należy, źe naukowo Polacy zajmują się bardzo gruntow nie dobą starszą i

Wzięli w niej udział przedstawiciele polskich ośrodków nauko- wych (uniwersytetu Warszawskiego, uniwersytetu Śląskiego, uniwersytetu Opolskiego, uniwersytetu

Kaskada klasyfikatorów AdaBoost (skrót od ang. Adaptive Boosting - adaptacyjne wzmacnianie) jest heurystycznym, binarnym klasyfikatorem (dokonuje rozpoznania, czy obiekt,

W artyku- le zaproponowano wykorzystanie tego typu modeli do prognozowania miesięcznego zużycia gazu w kotłowni pracującej na potrzeby ogrzewania i przygotowania ciepłej

Despite the model is general, we focus first on contact between a plastically deformable body with a sinusoidal surface and a rigid or an elastic platen in Chapter 3. The