• Nie Znaleziono Wyników

Petrology and geochemistry of rapakivi-type granites from the crystalline basement of NE Poland

N/A
N/A
Protected

Academic year: 2022

Share "Petrology and geochemistry of rapakivi-type granites from the crystalline basement of NE Poland"

Copied!
20
0
0

Pełen tekst

(1)

Pe trol ogy and geo chem is try of rapakivi-type gran ites from the crys tal line base ment of NE Po land

Bo gusław BAGIŃSKI, Jean-Clair DUCHESNE, Jac que line VANDER AUWERA, Hervé MARTIN and Janina WISZNIEWSKA

Bagiński B., Duchesne J.-C., Vander Auwera J., Mar tin H. and Wiszniewska J. (2001) — Pe trol ogy and geo chem is try of rapakivi-type gran ites from the crys tal line base ment of NE Po land. Geol. Quart., 45 (1): 33–52. Warszawa.

80 rock sam ples from drill-cores at 8 lo cal i ties in the Mazury com plex (Pol ish part of the crys tal line East Eu ro pean Craton), rep re sent ing rock types from monzodiorites to leucogranites, were stud ied for ma jor, trace and REE el e ments by XRF and ICP-MS meth ods. The range in com po si tion of the in ves ti gated rocks var ies from 46 to 76% SiO2 con tents. All of them show sim i lar REE dis tri bu tions, which sug gests that they are ge net i cally linked. They also plot along a ma jor trend with many sim i lar i ties to the jotunitic liq uid line of de scent de fined in AMCG rocks from Rogaland (Nor way). Each group of rocks has how ever its own spe cific pat tern of elements.

Bo gusław Bagiński, In sti tute of Geo chem is try, Min er al ogy and Pe trog ra phy, War saw Uni ver sity, Żwirki i Wigury 93, PL-02-089 Warszawa, Po land, e-mail: bobad@geo.uw.edu.pl; Jean-Clair Duchesne, Jac que line Vander Auwera, L.A. Géologie, Pétrologie, Géochimie Université de Liége (Bat. B20) B-4000 Sart Tilman, Bel gium; Hervé Mar tin, Laboratoire Magmas et Volcans, Université Blaise Pascal, 5 rue Kessler, 63038 Clermont-Ferrand, France; Janina Wiszniewska, Pol ish Geo log i cal In sti tute, Rakowiecka 4, PL-00-975 Warszawa, Po land, e-mail: jwis@pgi.waw.pl (re ceived: Oc to ber 27, 2000; ac cepted: De cem ber 20, 2000).

Key words: Mazury com plex, rapakivi-type gran ites, jotunite, gran ite mod el ling.

INTRODUCTION

The Mazury com plex, sit u ated in NE Po land, is part of the East Eu ro pean Craton (EEC) that forms the north east ern part of Eu rope (Fig. 1). The west ern, Pol ish part of the EEC is cov ered by Phanerozoic plat form sed i ments. The thick ness of this cover var ies from 400 m in the east, to 6500 m along the TTZ (Teisseyre- Tornquist Zone) (Fig. 2), as the crys tal line base - ment dips to the SW.

The crys tal line rocks of the Mazury com plex have also been stud ied re cently by Claesson et al. (1995b), Claesson and Ryka (1999), Lorenc and Wiszniewska (1999), Cymerman and Wiszniewska (1999), Bagiński et al. (1999, 2000) and Skridlaite et al. (2000). The main aim of the pres ent study was to check new geo chem i cal data on var i ous rock types com ing from dif fer ent area (dif fer ent mas sifs?) of the Mazury com plex in re spect of their evo lu tion from cogenetic magma batches by sim i lar pro cesses though vari able in de grees of pres sure, tem - per a ture, con tam i na tion and level of em place ment.

GEOLOGICAL SETTING

The Pol ish part of the EEC con sists of three large granitoid

mas sifs (Mazovian, Dobrzyń and Pom er a nian) sep a rated by

granulite-gneiss belts (Podlasie, Ciechanów, Kaszuby) with a

com plex Pre cam brian his tory (Fig. 2). The granitoids were

thought by Kubicki and Ryka (1982) and by Znosko (1998) to

be Archaean, based on sparse K-Ar age de ter mi na tions of 2.65

Ga (Depciuch et al., 1975). Re cently, a new ap proach, based on

com bined geo chron ol ogi cal and pet ro log i cal stud ies (Claesson

and Ryka, 1999), con fines the Archaean do main to the north -

east ern part of the Bal tic Shield (Karelia and Kola Pen in sula)

and to the east ern part of EEC (Ukraine), ex clud ing Archaean

rocks from Po land (Kubicki and Ryka, 1982). In deed, new Nd

model ages ob tained at the Swed ish Mu seum Iso to pic Lab o ra -

tory in Stock holm (Claesson and Ryka, 1999) on rocks from

the main units of the crys tal line base ment of Po land were all

Palaeoproterozoic. These rocks have been meta mor phosed un -

der am phi bo lite fa cies con di tions and the main phase of de for -

ma tion and meta mor phism of the Pol ish part of the EEC is now

(2)

con sid ered as Svecofennian in age (Claesson et al., 1995b).

Two zir con frac tions ex tracted from the gran ites of Mazury com plex gave an U-Pb age of about 1.5 Ga (Claesson et al., 1995a). Sim i lar rapakivi-type in tru sions from Lith u a nia, the Kabeliai com plex (Skridlaite et al., 2000), yielded a zir con U-Pb age of 1505±11 Ma (Sundblad et al., 1994). On an other hand, Mazury acidic rocks gave de pleted man tle Nd model ages T(Nd)

DM

of 2.1 to 2.2 Ga (Claesson et al., 1995b), while the Suwałki an or tho site-gabbronorite com plex yielded Nd model ages of 1.7 to 2.3 Ga (Wiszniewska et al., 1999).

Titanomagnetite and sul phide ores from the Suwałki mas sif dated by the Re-Os method have given isochron ages of 1559±37 and 1556±94 Ma (Stein et al., 1998; Mor gan et al., 2000; Wiszniewska and Stein, 2000).

The tec tonic set ting of Mesoproterozoic magmatism in the Mazury com plex has been con sid ered (Kubicki and Ryka, 1982) as linked to a E–W trending zone of post-collisional or i - gin or caused by re ju ve na tion of an older lin ea ment. Sev eral in tru sions of anorogenic char ac ter and bi modal com po si tion, mostly rapakivi-type gran ites and an or tho site-norite in tru sions (Suwałki, Sejny, Kętrzyn), have been de scribed within this area. In te grated geo phys i cal ap proaches have been used to try to de ter mine the shape, struc ture and ex ten sion of the mag matic belt (Wiszniewska et al., 2000). On the mag netic im age map, the Mazury com plex does not show any spe cific fea tures, and gen er ally com prises in a mo saic of pos i tive anom a lies. On a Bouguer map the anom aly is mod er ate in com par i son to the grav ity high on the north ern rim of the Mazovian mas sif and the grav ity low of the Dobrzyń do main in the west. The rapakivi-like granitoids show a vari able den si ties, with val ues mostly higher than those of the an or tho site-norite mas sifs. In the vec tor im age of the frac tional ver ti cal de riv a tive, the grav ity

34 Bogusław Bagiński, Jean-Clair Duchesne, Jacqueline Vander Auwera, Hervé Martin and Janina Wiszniewska

Fig. 1. Geo log i cal map of the Mazury com plex, NE Po land (af ter Kubicki and Ryka, 1982, mod i fied by Wiszniewska et al., 1999) Lo ca tion of the eight deep bore holes from which the sam ples stud ied have been col lected

Fig. 2. Tectono-structural scheme of the crys tal line base ment in the Pol ish part of the Pre cam brian plat form (af ter Kubicki and Ryka, 1982) Palaeoproterozoic struc tures: 1 — granitoid mas sifs with sub strate of older rock: Mazovian (Maz), Dobrzyń (Dob), Pom er a nian (Pom), 2 — old meta mor phic com plexes: Lublin (Lub), Podlasie (Pod), Ciechanów (Cie), Kaszuby (Kas); Mesoproterozoic struc tures: 3 — metamorphic Kampinos com plex (Kam), Mazury com plex (Mas), 4 — rapakivi-like granitoids (Rap), 5 — an or tho site mas sifs: Suwałki (SAM) and Kętrzyn (KAM); Neoproterozoic struc tures: 6 — meta mor phic quasi-plat form cover: Biebrza com plex (Bie); Teisseyre-Tornquist Zone (TTZ)

(3)

1. Charnockite; main rock com po nents: hypersthene (right cen ter), bi o tite, quartz, plagioclase; crossed polars, x 28, Łanowicze 10, depth 1162.5 m. 2.

Charnockite; hypersthene with nu mer ous in clu sions of quartz, il men ite, bi o tite and zir con (poikilitic tex ture); crossed polars, x 28, Łanowicze10, depth 1162.5 m. 3. Leucogranite; vis i ble microcline and al bite crys tals, quartz and min ute bi o tite; crossed polars, x 28, Olsztyn 1, depth 2764.0 m. 4. Ad vanced albitisation and sericitisation of plagioclase with small epidote crys tals and xenomorphic quartz crys tals; crossed polars, x 28, Olsztyn 4, depth 2780.5 m

PLATE I

(4)

36 Bogusław Bagiński, Jean-Clair Duchesne, Jacqueline Vander Auwera, Hervé Martin and Janina Wiszniewska

1. Por phy ritic tex ture with large pink K-feldspar in charnockite from the Łanowicze drill-core; depth 1111.8 m. 2. Large plagioclase in quartz monzodiorite from the Filipów drill-core; depth 1553.0 m. 3. Por phy ritic tex ture with large plagioclase crys tals in quartz monzonite from the Kętrzyn drill-core; depth 1549.5 m; di am e ter of the coin is 1.5 cm on all pho tos

PLATE II

(5)

1. Por phy ritic tex ture with large pink K-feldspar in the Gołdap gran ite; depth 1648.5 m. 2. Quartz monzodiorite from the Bartoszyce drill-core; depth 2141.5 m. 3. Porphyritic tex ture with large pink K-feldspar in the Pawłówka drill-core; depth 1907.0 m

PLATE III

(6)

38 Bogusław Bagiński, Jean-Clair Duchesne, Jacqueline Vander Auwera, Hervé Martin and Janina Wiszniewska

1. Quartz monzonite; clinopyroxene al ter ation to hornblende (cen tral left); ev i dence of de for ma tion in quartz and bi o tite (up per right); typ i cal struc ture of ti tan ite grow ing on il men ite (black, lower left); crossed polars, x 28, Gołdap 4, depth 1648.0 m. 2. Granodiorite; ti tan ite grow ing on il men ite (black); nu - mer ous bi o tite slightly al tered to chlorite; plane po lar ized light, x 28, Gołdap 2, depth 1636.5 m. 3. Quartz monzonite; large K-feldspars and plagioclase, smaller clinopyroxene al tered to hornblende (cen ter); plane po lar ized light, x 28, Bartoszyce 3, depth 2130.5 m. 4. Granodiorite; myrmekite zone; crossed polars, x 70, Bartoszyce 1A, depth 2141.5 m

PLATE IV

(7)

1. Quartz monzodiorite; al tered clinopyroxene crys tals within quartz (in the mid dle); quartz/bi o tite/clinopyroxene symplectite (up per right); nu mer ous small apatites; crossed polars, x 28, Klewno 1, depth 1782.0 m. 2. Quartz monzodiorite; rel ics of plagioclase within K-feldspar; al ter ation of clinopyroxene (up per left); crossed polars, x 28, Klewno 2, depth 1785.0 m. 3. Quartz monzonite; typ i cal tex ture of the rock (not de formed); the main min - er als vis i ble: plagioclase, quartz, K-feldspar, bi o tite and amphibolitised pyroxene; crossed polars, x 28, Filipów 7, depth 1351.5 m. 4. Quartz monzonite;

part of rock with clinopyroxene (cen tral part), bi o tite and hornblende (right mid dle), long nee dle-like in clu sion of ap a tite within cpx; crossed polars, x 28, Filipów 11, depth 1491.5 m

PLATE V

(8)

lin ea ments, mark ing den sity con trasts, are en hanced (Wiszniewska et al., 1998, 2000). We sup pose that rapakivi-like gran ite plutons are prob a bly mul ti ple in tru sions, emplaced at rel a tively shal low lev els.

PETROLOGY

Eight drill-cores from Olsztyn, Łanowicze, Gołdap, Bartoszyce, Pawłówka, Filipów, Kętrzyn, and Klewno, were in ves ti gated geochemically (Fig. 1). Their com po si tion ranges from diorites and monzodiorites (Klewno) to leucogranites (Olsztyn, Łanowicze). Eighty sam ples were cho sen for geo - chem i cal and pet ro log i cal in ves ti ga tion.

The Olsztyn leucogranite is a me dium-grained rock char ac - ter ized by abun dant, ori ented xenomorphic quartz crys tals.

The ground-mass is com posed of quartz, microcline,

plagioclase (An

21

— nor ma tive), mi nor bi o tite, and ac ces sory min er als (ap a tite, zir con, rutile and op aques) (Pl. I, Fig. 3). The rock is com monly albitised (Pl. I, Fig. 4) and partly chloritised and shows var i ous de grees of chloritisation and sericitisation.

Some myrmekites are also pres ent.

The Łanowicze drill-core has yielded more than 500 m of crys tal line rocks. It con sists of sev eral rock types:

1. Charnockite. This is a me dium-grained rock, in which bi o tite can lo cally de fine a lin ear fab ric. Its modal com po si tion con sists of quartz, plagioclase (An

38

— nor ma tive), K-feld spar, bi o tite, hypersthene and ac ces sory min er als (ap a tite, zir con, mag ne tite, il men ite and monazite) (Pl. I, Fig. 1). Gar net ap pears in meta-charnockite rocks as well as hypersthene, which breaks down to bowlingite-like ma te rial. Rocks dis play a por phy ritic tex ture with cm-sized K-feld spar and plagioclase crys tals (Pl.

II, Fig. 1). A poikilitic tex ture is also pres ent with hypersthene, quartz, bi o tite and op aques (Pl. I, Fig. 2).

40 Bogusław Bagiński, Jean-Clair Duchesne, Jacqueline Vander Auwera, Hervé Martin and Janina Wiszniewska

Ma jor (%) and trace (ppm) el e ment com po si tion

Sam ple SiO2 TiO2 Al2O3 Fe2O3 MnO MgO CaO Na2O K2O P2O5 Ba Ce

Olsztyn 1 Olsztyn 4 Olsztyn 5 Olsztyn 7 Łanowicze 1 Łanowicze 2 Łanowicze 9 Łanowicze 11 Łanowicze 15 Łanowicze 17 Łanowicze 19 Łanowicze 22 Łanowicze 24 Łanowicze 25 Łanowicze 26 Łanowicze 27 Gołdap 2 Gołdap 3 Gołdap 4 Gołdap 5 Gołdap 6 Gołdap 7 Bartoszyce 4 Bartoszyce 5 Bartoszyce 6 Bartoszyce 7 Pawłówka 17 Pawłówka 144 Pawłówka 85 Filipów 1 Filipów 5 Filipów 8 Filipów 13 Klewno 2 Klewno 3 Kętrzyn 1 Kętrzyn 3 Kętrzyn 4 Kętrzyn 5 Kętrzyn 6

71.88 72.45 74.71 73.51 63.78 71.69 63.71 61.37 62.02 69.24 67.91 67.00 69.86 70.71 70.36 68.66 65.36 63.96 63.94 65.89 66.75 64.98 60.66 60.91 51.29 62.06 61.09 60.75 58.00 58.64 59.74 58.57 57.29 46.30 47.87 58.80 55.35 57.86 53.17 53.78

0.39 0.39 0.33 0.27 0.91 0.37 1.01 1.03 0.99 0.67 0.60 0.79 0.46 0.43 0.43 0.68 0.75 1.38 1.21 0.86 0.81 1.04 1.37 1.21 2.22 0.99 1.53 1.68 1.39 1.49 1.48 1.53 1.84 2.87 2.57 1.03 1.91 1.48 1.75 1.81

14.53 14.21 14.15 13.71 16.28 13.26 15.85 16.03 16.40 14.85 14.75 15.36 13.94 13.35 14.29 14.74 15.92 14.37 15.51 15.40 15.26 14.96 16.05 16.01 14.65 16.97 14.00 13.94 14.91 15.17 14.83 15.14 14.71 14.74 16.34 17.56 17.60 17.47 16.72 16.56

1.94 2.58 2.16 2.37 6.81 3.04 7.57 7.67 7.66 4.70 4.18 5.47 4.14 4.06 3.79 5.10 3.62 6.59 5.45 4.65 4.10 5.09 7.31 7.12 14.82 5.55 8.84 10.02 8.01 8.60 8.64 8.71 10.25 14.86 13.53 5.59 9.50 8.42 9.24 9.89

0.03 0.03 0.03 0.02 0.08 0.07 0.11 0.12 0.13 0.07 0.07 0.08 0.10 0.10 0.08 0.07 0.06 0.12 0.11 0.08 0.06 0.09 0.14 0.13 0.23 0.10 0.13 0.17 0.13 0.13 0.13 0.15 0.17 0.22 0.13 0.10 0.15 0.13 0.15 0.15

0.76 0.81 0.65 0.56 1.78 0.97 2.02 1.92 1.95 1.27 1.10 1.38 0.46 0.39 0.42 1.23 0.99 1.50 1.34 1.04 0.98 1.17 1.63 1.48 2.42 1.15 2.02 2.29 1.87 2.34 2.14 2.16 2.52 3.93 3.75 1.64 1.97 1.90 2.07 1.92

2.20 1.49 1.55 0.48 3.88 1.34 3.97 4.05 3.92 2.53 2.73 3.22 2.30 1.94 2.40 2.72 2.28 3.88 3.61 3.21 2.66 3.08 4.87 4.35 6.01 4.18 4.12 4.51 4.10 4.09 4.40 4.59 5.47 7.63 6.63 4.00 6.69 5.92 6.31 6.42

3.53 2.88 3.07 3.06 3.19 2.35 2.86 2.96 3.03 2.72 2.83 2.93 2.57 2.37 2.76 2.69 2.75 3.11 3.26 3.27 3.03 2.97 3.72 3.37 3.19 3.82 2.60 2.80 2.73 2.72 2.82 2.83 2.97 2.90 3.24 3.16 3.87 3.78 3.69 3.56

4.16 5.41 4.86 5.41 2.86 4.85 2.94 2.94 3.45 4.25 4.14 3.66 4.26 4.85 4.16 4.27 7.45 4.65 5.29 5.20 6.27 5.84 3.74 4.82 3.83 4.98 4.08 3.47 3.52 4.02 3.69 3.99 2.89 3.68 2.60 6.52 4.07 4.10 3.57 4.11

0.08 0.10 0.08 0.06 0.19 0.06 0.23 0.23 0.32 0.14 0.19 0.23 0.08 0.09 0.09 0.18 0.39 0.70 0.54 0.48 0.44 0.55 0.73 0.71 1.29 0.55 0.53 0.62 0.50 0.52 0.53 0.54 0.64 2.15 1.79 0.68 1.39 1.10 1.21 1.38

753 953 652 707 1009 717 1231 1371 1292 871 1080 995 1720 1802 1287 1244 2344 1394 1701 1606 1883 1874 1679 2164 1673 2193 1322 1083 1467 1968 1795 2121 1560 2110 1567 3509 2235 2228 2042 2431

51 99 95 71 109 58 124 116 117 100 93 103 141 122 133 100 236 388 358 262 269 307 347 300 467 265 192 225 180 129 181 183 198 497 444 214 419 276 311 350

(9)

2. Granodiorites and gran ites. These are less abun dant than charnockites from which they dif fer only by a lack of hypersthene and dif fer ences in plagioclase and K-feldspar abun dances.

3. Leucogranites. These are sim i lar to granodiorite, but are usu ally albitised with bi o tite, al tered to chlorite.

Meta mor phosed rocks with a granitic com po si tion have been also found in the Łanowicze drill-core. They form lay ers sev eral metres thick within charnockites, granodiorites and gran ites. The re la tion ships be tween these rock types sug gest that they could have been gen er ated in two mag matic ep i sodes, the first one linked to the last meta mor phic event, dated in the Belarussian part of the BBG (Bal tic-Belarussian Granulite) zone at 1.76 Ga (Bogdanova et al., 1996), and the sec ond one con nected with rapakivi magmatism at ca. 1.5 Ga (Claesson et al., 1995b). This view is sup ported by the dif fer ent tex tures of

the charnockites: the “older” dis play meta mor phic tex tures with lin ear bi o tite and de formed quartz and feld spars, while the

“youn ger” ones dis play a tex ture sim i lar to granodiorites.

More iso tope data are needed to better de tail their evo lu tion.

The Gołdap por phy ritic granodiorites and quartz monzodiorites are me dium- and coarse-grained mas sive rocks with 3–5 cm-sized plagioclase (An

29

— nor ma tive) and K-feld - spar megacrysts (Pl. III, Fig. 1). The groundmass of the rock is made up of plagioclase, K-feld spar, quartz, bi o tite, mi nor hornblende, nu mer ous ti tan ite crys tals, ap a tite, zir con and op - aques (Pl. IV, Fig. 2). Myrmekites and quartz-bi o tite symplectites are also pres ent. Changes in the plagioclase/K-feld spar ra tio re sulted in a mag matic suite from granodiorite (sam ples 1–3) to quartz monzonite and gran ite (sam ples 4–7). The rocks were slightly al tered by sericitisation (plagioclases) and amphibolitisation (clinopyroxenes) pro -

T a b l e 1 of rep re sen ta tive sam ples from the Mazury com plex

Co Cr Cu Mo Nb Ni Pb Rb Sr Th U V Y Zn Zr

9 4 5 6 20 11 21 19 21 15 12 12

<3 5 9 12 6 7 3 3 5 5 3 3 7 6 17 17 17 23 18 21 20 33 27 10 15 13 14 14

18 19 23 12 37 24 39 47 38 32 22 26 15 21 14 21 3 3 3 3 3 3 3 3 3 3 3 12 6 8 10 10

< 3 6 3 9 12 10 11 13

10 5 5 6 33 13 25 27 54 21 22 25 91 40 32 19 10 10 10 10 10 10 10 10 10 10 22 21 19 29 28 23 30 68 27 5 11 7 14 13

2 2 2 2

<2

<2

<2

<2

<2

<2 2

<2

<2

<2

<2

<2 3 4 3 3 4 3 3 3 3 3 2 2 2

<2

<2

<2

<2 2 2 2 2 2 2 2

9 6 7 6 13 9 13 13 17 12 11 14 9 6 5 12 11 33 31 15 20 26 20 15 33 15 22 24 19 19 17 19 22 45 33 16 26 18 24 26

6 7 5 5 25 10 27 27 29 16 15 18 5 5 7 17 3 3 3 3 3 3 3 3 3 3 18 15 17 21 20 22 19 22 17 4 8 8 7 9

28 24 26 21 23 31 21 24 23 25 26 24 27 34 29 26 39 34 33 36 35 36 29 33 24 35 30 31 30 12 25 27 22 19 20 26 20 20 20 18

159 185 166 181 115 145 109 97 138 149 146 145 136 151 137 154 233 170 180 173 205 196 108 129 117 130 157 146 143 177 121 114 108 82 94 175 102 109 97 105

199 194 151 134 223 111 194 245 193 145 165 169 193 174 177 169 383 320 351 348 359 353 409 433 370 457 274 262 359 356 359 369 367 745 712 561 546 530 528 529

3 7 9 8 23 10 24 22 22 21 18 21 22 15 22 21 15 25 22 15 14 19 5 5 8 4 23 16 12 9 13 9 17 6 6 9 27 11 12 15

3 3 3 3

<3

<3

<3

<3

<3

<3

<3

<3

<3

<3

<3

<3 3 3 3 3 5 3 6 5 7 6 4 3 3 3

<3

<3 3 3 3 3 4 3 3 3

48 39 23 25 99 35 118 112 115 65 59 78 17 14 15 72 37 93 61 47 50 57 87 78 168 66 134 155 115 138 142 147 164 244 254 66 122 111 120 132

9 21 17 16 40 15 34 35 49 31 31 34 30 32 33 27 38 97 76 44 33 56 52 51 102 35 52 62 50 37 45 47 56 102 76 52 96 69 85 95

38 50 34 27 82 46 101 109 109 64 61 79 91 97 57 76 74 130 111 93 74 96 147 140 240 113 122 173 136 149 139 142 169 299 256 128 172 170 184 182

134 173 147 123 290 141 314 310 336 230 220 286 436 400 396 252 336 671 578 457 439 578 632 763 1316 552 504 572 444 497 500 444 525 462 1171 659 1017 902 1010 1181

(10)

42Bogusław Bagiński, Jean-Clair Duchesne, Jacqueline Vander Auwera, Hervé Martin and Janina Wiszniewska 2 e l b a T e

h t m o r f

s

e l p m a s e v i t a t n e s e r p e r

f

o n o i t i s o p m o c

)

m p p (

t

n e m e l e h t r a E e r a

R Mazurycomplex

e l p m a

S La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu

n y t z s l

O 1

n y t z s l

O 4

n y t z s l

O 5

n y t z s l

O 7

Łanowicze1 Łanowicze2 Łanowicze9 Łanowicze11 Łanowicze15 Łanowicze17 Łanowicze19 Łanowicze22 Łanowicze24 Łanowicze25 Łanowicze26 Łanowicze27

2 p a d ł o G

3 p a d ł o G

4 p a d ł o G

5 p a d ł o G

6 p a d ł o G

7 p a d ł o G

e c y z s o t r a

B 4

e c y z s o t r a

B 5

e c y z s o t r a

B 6

e c y z s o t r a

B 7

ł w a

P ówka17 ł w a

P ówka144 ł w a

P ówka85 w ó p i l i

F 1

w ó p i l i

F 5

w ó p i l i

F 8

w ó p i l i

F 13

o n w e l

K 2

o n w e l

K 3

n y z r t ę

K 1

n y z r t ę

K 3

n y z r t ę

K 4

n y z r t ę

K 5

n y z r t ę

K 6

6 2 . 8 2

7 6 . 4 4

7 0 . 8 4

1 2 . 2 3

1 7 . 2 8

8 4 . 3 3

7 3 . 0 8

6 1 . 1 7

6 4 . 2 7

0 6 . 3 5

0 4 . 8 4

7 0 . 8 5

9 1 . 8 7

3 1 . 8 6

7 7 . 9 4

5 0 . 2 5

0 5 . 4 0 1

0 0 . 3 6 1

6 7 . 2 5 1

0 0 . 6 1 1

0 0 . 4 1 1

0 0 . 4 4 1

0 0 . 2 4 1

0 0 . 4 3 1

0 0 . 8 9 1

3 4 . 0 1 1

1 0 . 4 1 1

9 8 . 2 9

5 1 . 8 1 1

0 6 . 5 5

8 0 . 4 9

5 8 . 8 8

5 6 . 0 0 1

7 4 . 5 6 2

9 2 . 3 4 2

5 0 . 2 0 1

2 2 . 5 3 2

6 6 . 2 3 1

5 3 . 5 5 1

6 3 . 0 9 1

5 2 . 7 4

3 2 . 2 8

8 9 . 8 8

3 9 . 8 5

3 6 . 5 7 1

9 9 . 3 6

1 2 . 1 7 1

5 8 . 1 4 1

1 2 . 3 5 1

3 4 . 9 1 1

2 3 . 0 0 1

4 6 . 6 2 1

1 4 . 0 6 1

8 1 . 5 3 1

8 0 . 9 9

0 3 . 4 1 1

0 5 . 4 2 2

0 0 . 0 9 3

6 0 . 6 3 3

0 0 . 8 3 2

0 0 . 4 3 2

0 0 . 1 0 3

0 0 . 1 9 2

0 0 . 1 7 2

0 0 . 2 3 4

4 1 . 7 2 2

7 4 . 4 1 2

6 9 . 6 8 1

3 4 . 1 4 2

6 2 . 5 2 1

1 7 . 7 8 1

2 6 . 7 7 1

1 9 . 5 0 2

1 5 . 3 7 5

9 0 . 7 1 5

6 9 . 4 2 2

5 8 . 7 1 5

7 2 . 3 9 2

0 5 . 1 5 3

4 5 . 4 2 4

4 8 . 4

2 2 . 9

7 4 . 9

5 3 . 6

3 9 . 9 1

3 3 . 7

9 3 . 9 1

0 6 . 6 1

4 2 . 7 1

9 4 . 3 1

0 9 . 1 1

0 3 . 4 1

0 8 . 8 1

0 5 . 6 1

0 7 . 1 1

4 1 . 3 1

0 3 . 5 2

0 6 . 4 4

6 3 . 1 4

0 8 . 7 2

0 5 . 6 2

0 9 . 5 3

0 6 . 5 3

0 0 . 3 3

0 9 . 5 5

8 5 . 6 2

7 4 . 4 2

5 6 . 1 2

1 0 . 8 2

1 1 . 6 1

9 6 . 1 2

5 7 . 0 2

4 2 . 4 2

2 3 . 9 6

5 2 . 1 6

D / N

D / N

D / N

D / N

D / N

4 2 . 5 1

9 7 . 0 3

1 9 . 9 2

3 2 . 1 2

6 9 . 9 6

0 8 . 4 2

8 3 . 1 7

9 1 . 1 6

9 5 . 2 6

7 1 . 0 5

7 2 . 2 4

3 2 . 2 5

9 5 . 9 6

9 8 . 8 5

3 5 . 2 4

1 8 . 9 4

0 9 . 8 9

0 0 . 4 7 1

8 7 . 0 4 1

0 0 . 2 0 1

0 0 . 1 0 1

0 0 . 0 3 1

0 0 . 7 3 1

0 0 . 4 5 1

0 0 . 9 1 2

2 8 . 4 0 1

7 1 . 6 9

4 0 . 4 8

7 5 . 0 1 1

2 0 . 1 7

2 3 . 6 8

4 2 . 3 8

2 2 . 6 9

5 4 . 2 8 2

7 5 . 7 3 2

8 2 . 1 1 1

7 2 . 2 4 2

5 7 . 3 4 1

1 6 . 7 7 1

0 6 . 4 0 2

5 6 . 2

4 5 . 5

0 9 . 4

9 5 . 3

5 3 . 1 1

7 1 . 4

5 0 . 2 1

0 7 . 0 1

2 0 . 1 1

6 3 . 9

3 9 . 7

1 9 . 9

0 4 . 2 1

0 5 . 0 1

1 7 . 7

9 8 . 8

0 6 . 6 1

0 1 . 1 3

9 9 . 7 2

0 1 . 8 1

0 2 . 7 1

0 6 . 2 2

0 8 . 3 2

0 3 . 2 2

0 5 . 0 4

1 4 . 7 1

9 7 . 6 1

0 1 . 6 1

7 1 . 9 1

0 5 . 2 1

8 9 . 4 1

6 5 . 4 1

7 6 . 6 1

7 5 . 5 4

8 0 . 7 3

4 8 . 0 2

6 6 . 9 3

2 1 . 5 2

9 7 . 1 3

8 6 . 5 3

3 4 . 1

9 3 . 1

9 1 . 1

6 9 . 0

2 2 . 2

0 3 . 1

4 4 . 2

8 5 . 2

2 1 . 2

2 5 . 1

8 5 . 1

5 7 . 1

2 5 . 2

3 1 . 3

9 1 . 2

0 8 . 1

8 0 . 3

7 1 . 5

0 4 . 5

7 2 . 3

6 7 . 2

7 9 . 3

7 6 . 4

1 5 . 4

8 7 . 5

1 6 . 4

2 6 . 3

1 5 . 3

8 3 . 3

9 4 . 3

1 7 . 3

1 7 . 3

4 8 . 3

8 0 . 8

9 9 . 6

0 0 . 5

9 2 . 8

8 7 . 5

0 5 . 6

8 7 . 7

7 0 . 2

3 5 . 4

0 9 . 3

7 1 . 3

1 5 . 1 1

6 1 . 3

1 4 . 1 1

7 8 . 8

4 6 . 1 1

7 4 . 9

8 8 . 6

2 3 . 0 1

4 5 . 9

1 6 . 7

8 2 . 6

2 8 . 9

0 8 . 1 1

0 2 . 1 2

0 2 . 0 2

0 1 . 2 1

0 4 . 0 1

0 1 . 4 1

0 0 . 5 1

0 4 . 5 1

0 8 . 7 2

2 1 . 3 1

5 0 . 3 1

4 6 . 2 1

8 7 . 4 1

6 9 . 9

9 3 . 1 1

5 3 . 1 1

4 3 . 3 1

4 1 . 1 3

5 3 . 5 2

3 7 . 5 1

9 3 . 8 2

0 3 . 0 2

0 8 . 4 2

8 2 . 6 2

0 3 . 0

2 7 . 0

1 6 . 0

D / N

D / N

4 4 . 0

D / N

5 2 . 1

D / N

9 7 . 0

4 0 . 1

6 9 . 0

6 3 . 1

8 0 . 1

6 9 . 0

D / N

0 9 . 1

1 0 . 3

2 9 . 2

2 9 . 1

4 5 . 1

1 1 . 2

8 3 . 2

6 1 . 2

6 0 . 4

1 8 . 1

0 8 . 1

4 8 . 1

4 0 . 2

6 3 . 1

8 4 . 1

7 5 . 1

1 8 . 1

6 9 . 3

4 1 . 3

8 3 . 2

8 9 . 3

4 9 . 2

1 4 . 3

0 7 . 3

4 6 . 1

1 9 . 3

2 2 . 3

9 6 . 2

5 9 . 7

8 5 . 2

2 2 . 7

3 0 . 7

7 9 . 8

6 3 . 6

7 8 . 5

7 4 . 7

0 7 . 7

8 8 . 5

1 4 . 5

5 9 . 5

5 2 . 0 1

5 4 . 8 1

9 7 . 6 1

5 7 . 0 1

1 5 . 8

5 3 . 2 1

0 3 . 2 1

0 7 . 1 1

0 9 . 0 2

1 4 . 9

9 0 . 0 1

8 3 . 0 1

2 7 . 1 1

9 7 . 7

8 6 . 8

9 7 . 8

0 5 . 0 1

6 8 . 0 2

8 9 . 5 1

4 4 . 1 1

9 1 . 0 2

3 0 . 5 1

2 6 . 7 1

1 2 . 9 1

0 4 . 0

1 8 . 0

4 6 . 0

0 5 . 0

3 7 . 1

7 5 . 0

3 5 . 1

2 4 . 1

9 9 . 1

9 3 . 1

6 1 . 1

4 6 . 1

0 5 . 1

7 1 . 1

0 1 . 1

8 3 . 1

0 2 . 2

5 8 . 3

0 5 . 3

9 2 . 2

1 9 . 1

8 5 . 2

5 4 . 2

4 3 . 2

4 2 . 4

3 9 . 1

2 0 . 2

6 0 . 2

4 3 . 2

5 5 . 1

5 7 . 1

9 7 . 1

1 1 . 2

3 8 . 3

3 0 . 3

D / N

D / N

D / N

D / N

D / N

1 9 . 0

8 8 . 1

8 5 . 1

2 4 . 1

7 0 . 4

1 7 . 1

5 5 . 3

7 4 . 3

2 0 . 5

8 3 . 3

1 8 . 2

7 5 . 3

1 1 . 4

8 8 . 2

0 9 . 2

6 8 . 2

5 5 . 5

6 8 , 9

7 0 . 9

5 7 . 5

0 7 . 4

4 7 . 6

4 8 . 5

6 5 . 5

0 2 . 0 1

7 4 . 4

9 2 . 5

9 9 . 4

6 4 . 6

1 7 . 3

4 5 . 4

9 5 . 4

5 3 . 5

7 3 . 9

8 2 . 7

9 2 . 5

1 3 . 9

5 9 . 6

3 6 . 8

0 1 . 9

3 1 . 0

8 2 . 0

9 1 . 0

9 1 . 0

9 5 . 0

0 3 . 0

8 4 . 0

9 4 . 0

9 6 . 0

0 5 . 0

8 3 . 0

5 4 . 0

7 5 . 0

7 3 . 0

1 4 . 0

8 3 . 0

0 8 . 0

5 4 . 1

1 3 . 1

2 8 . 0

4 7 . 0

4 0 . 1

6 7 . 0

1 7 . 0

9 3 . 1

6 6 . 0

9 6 . 0

8 5 . 0

5 8 . 0

6 4 . 0

0 6 . 0

0 6 . 0

1 7 . 0

2 2 . 1

2 9 . 0

D / N

D / N

D / N

D / N

D / N

7 8 . 0

7 5 . 1

7 2 . 1

4 0 . 1

5 1 . 4

2 3 . 2

6 5 . 3

8 0 . 3

0 8 . 4

5 8 . 3

8 0 . 2

2 1 . 3

1 9 . 3

9 4 . 2

3 7 . 2

4 0 . 3

3 0 . 5

0 4 . 9

0 5 . 8

6 6 . 5

6 5 . 4

6 6 . 6

5 8 . 4

0 6 . 4

5 1 . 8

3 8 . 3

5 4 . 4

8 5 . 3

7 2 . 5

0 0 . 3

8 5 . 3

2 5 . 3

1 4 . 4

9 8 . 6

9 1 . 5

3 5 . 4

9 3 . 8

9 4 . 5

0 7 . 6

1 5 . 7

3 1 . 0

7 1 . 0

8 1 . 0

4 1 . 0

5 5 . 0

9 3 . 0

8 4 . 0

5 4 . 0

0 6 . 0

9 4 . 0

0 3 . 0

9 3 . 0

4 5 . 0

6 3 . 0

9 3 . 0

4 3 . 0

6 7 . 0

5 5 . 1

1 3 . 1

3 8 . 0

2 7 . 0

7 0 . 1

3 7 . 0

1 7 . 0

7 1 . 1

3 5 . 0

3 6 . 0

8 4 . 0

6 7 . 0

4 4 . 0

7 4 . 0

0 5 . 0

4 6 . 0

5 9 . 0

1 7 . 0

5 5 . 0

3 0 . 1

5 7 . 0

6 8 . 0

0 1 . 1

d e t c e t e d o n

— D N

(11)

cesses (Pl. IV, Fig. 1). Mi nor prehnite and cal cite re sult from late al ter ation (sam ples 4 and 5).

Quartz monzonites and granodiorites with sub or di nate quartz syenites and quartz monzodiorites oc cur in the Bartoszyce core. They are com posed of K-feld spar, plagioclase (An

33

— nor ma tive), quartz, bi o tite, hornblende, clino - pyroxene, ap a tite, zir con and op aques. The rock is char ac ter - ised by a por phy ritic tex ture (Pl. III, Fig. 2), with large plagioclase and K-feld spar pheno crysts (Pl. IV, Fig. 3).

Myrmekites are wide spread (Pl. IV, Fig. 4).

Pawłówka rocks con sist in granodiorites made of quartz, plagioclase (An

41

— nor ma tive), K-feld spar, bi o tite, mi nor hornblende and clinopyroxene, ap a tite, zir con and op aques, and rare ti tan ite (usu ally as so ci ated with hornblende). A por - phy ritic tex ture (Pl. III, Fig. 3), with 5 cm-sized plagioclases and K-feld spar pheno crysts, is typ i cal. Sericitisation and chloritisation are con spic u ous.

Quartz monzonite and mi nor quartz monzodiorite have been de scribed from the Filipów drill-core. They are made up of plagioclase (An

42

— nor ma tive), quartz, K-feld spar, bi o tite, clinopyroxene, hornblende, ti tan ite, ap a tite, mi nor zir con and op aques (Pl. V, Figs. 3 and 4). They dis play a por phy ritic tex - ture (Pl. II, Fig. 2) with plagioclase and K-feld spar crys tals up to 5 cm. The rock is com monly de formed and partly mylonitised.

Quartz monzodiorites to mafic diorites oc cur in Klewno.

The rocks are me dium- to coarse-grained and have a mas sive, ophitic tex ture. Plagioclase (up to 40 vol% — An

43

— nor ma - tive) and bi o tite are the main com po nent of the rocks. Large

euhedral plagioclase crys tals, bi o tite, clinopyroxene or hornblende re sult ing from clinopyroxene al ter ation (Pl. V, Fig. 1) were dis tin guished. The por phy ritic tex ture is pres ent in sam ples from Klewno where megacrysts (up to 3 cm) of plagioclases are vis i ble. Large K-feld spar (Pl. V, Fig. 2) and quartz are also ba sic con stit u ents. The ac ces so ries are ti tan ite,

Fig. 4. Agpaitic in dex (Na +K/Al (atom %) vs SiO2;the limit at AI = 0.87 (min i mum value for al ka line meta-aluminous granitoids) is af ter Liégeois and Black (1987)

For ex pla na tions see Fig. 3 Fig. 3. Pea cock in dex (CaO/Na2O + K2O) vs SiO2 af ter Brown (1981)

1 — Łanowicze, 2 — Filipów, 3 — Gołdap, 4 — Bartoszyce, 5 — Olsztyn, 6 — Klewno, 7 — Kętrzyn, 8 — Pawłówka

(12)

44 Bogusław Bagiński, Jean-Clair Duchesne, Jacqueline Vander Auwera, Hervé Martin and Janina Wiszniewska

Fig. 5. K2O vs SiO2 (the di vid ers are af ter Rickwood, 1989) For ex pla na tions see Fig. 3

Fig. 6. Q = (Si/3)–[K+Na+(2Ca/3)] against P=K–(Na+Ca) di a gram of Debon and Le Fort (1988)

Sym bols have fol low ing mean ings: to — tonalite, gd — granodiorite, ad — adamellite, gr — gran ite, qmzd — quartz monzodiorite, qmz — quartz monzonite; CALK — line, shown trends of calk-alkaline rocks, SALK — trend lines are also shown

(13)

Fig. 7. Ma jor el e ments con tent (%) vs SiO2 (Harker di a grams), ad di tional sam ples from Ardery (C-type gran ite trend) (Kil pat rick and Ellis, 1992) are in - cluded

For ex pla na tions see Fig. 3

(14)

ap a tite, zir con and op aques. Myrmekites and bi o tite-quartz symplectites are also abun dant.

The Kętrzyn sam ples are quartz monzodiorites com posed of plagioclase (An

36

— nor ma tive), K-feld spar, quartz, bi o tite, hornblende, ti tan ite, ap a tite, zir con and op aques. They dis play

coarse, por phy ritic tex tures with large plagioclase and K-feld - spar crys tals (Pl. II, Fig. 3).

Most rocks dis play clear por phy ritic tex tures sim i lar to those ob served in rapakivi gran ite (the only ex cep tion are the sam ples from the Olsztyn drill-core). Typ i cal K-feldspars rimmed by plagioclase have, how ever, not been ob served.

46 Bogusław Bagiński, Jean-Clair Duchesne, Jacqueline Vander Auwera, Hervé Martin and Janina Wiszniewska

Fig. 7 con tin ued

(15)

Fig. 8. Sr, Co and V con tent (ppm) vs SiO2

For ex pla na tions see Fig. 3

(16)

GEOCHEMISTRY

Ma jor and trace el e ments on 80 sam ples have been ana - lysed by XRF with a Philips PW 2400 Rtg spec trom e ter at the Pol ish Geo log i cal In sti tute fol low ing the stan dard bo rate melt - ing method, while REE and some ultratrace el e ments were ana lysed in 40 sam ples by the ICP-MS method with a VG el e - men tal PQ 2 Plus spec trom e ter at the Uni ver sity of Liége (Bel - gium) fol low ing the method de scribed by Vander Auwera et al. (1998a)> The re sults are pre sented in Ta bles 1 and 2.

The SiO

2

con tents range from 46 to 76%. Rock types vary from diorite (Klewno) to leucogranite (Olsztyn) com pris ing also quartz monzodiorite, quartz monzonite and granodiorite.

The more dif fer en ti ated rock suite is the Łanowicze mas sif in which SiO

2

ranges from 60 to 76%, other drill-cores giv ing less dif fer en ti ated suites.

MAGMA TYPES

In the Pea cock di a gram (Fig. 3), Łanowicze and Olsztyn are calc-al ka line, and the other mas sifs lie am big u ously close to the limit be tween al kali-calcic and al ka line se ries. None of the rocks has an agpaitic in dex > 0.8 (ex cept one albitised sam - ple from Łanowicze — Fig. 4), and thus they are not al ka line.

The K

2

O–SiO

2

di a gram (Fig. 5) shows that rocks from Łanowicze are high K calc-al ka line, whereas the rest of the

rocks plot into the very high K do main. Since their calc-al ka - line char ac ter is ab sent, they can not be con sid ered as shoshonites. They rather be long to the subalkaline potassic suite (sensu Debon and Le Fort, 1988) (Fig. 6).

MAJOR ELEMENTS

Harker di a grams for ma jor el e ments show that the rocks plot along a grossly de fined jotunitic line of de scent (Duchesne and Wilmart, 1997; Vander Auwera et al., 1998b), which is close to the C-type gran ite trend (Fig. 7) (Kil pat rick and Ellis, 1992) and is typ i cal of the AMCG suite (an or tho site, mangerite, charnockite [rapakivi] gran ite). The mafic terms of the suite are TiO

2

-, FeO

t

- and P

2

O

5

-rich (4, 18 and 3% re spec - tively), which is a typ i cal fea ture of jotunites (Fe-Ti-P-rich hypersthene monzodiorites). FeO

3

t

, MgO and CaO are pos i - tively cor re lated with SiO

2

. The Fe/Mg ra tio for the Mazury com plex is in ter me di ate in most mas sifs com pared to the higher val ues in the evolved jotunites from Nor way (Duchesne and Wilmart, 1997; Vander Auwera et al., 1998b).

TRACE ELEMENTS

Harker di a grams for trace el e ments do not dis play unique dif fer en ti a tion trends as re gards ma jor el e ments, each group

48 Bogusław Bagiński, Jean-Clair Duchesne, Jacqueline Vander Auwera, Hervé Martin and Janina Wiszniewska

Fig. 9. Zn con tent (ppm) vs SiO2

For ex pla na tions see Fig. 3

(17)

hav ing its own spec i fic ity. The most strik ing vari a tion is ob - served in the Sr vs SiO

2

di a gram (Fig. 8). Each group of rocks has dis tinct Sr con tents which re main nearly con stant with dif - fer en ti a tion (slightly pos i tive or neg a tive slopes). This hor i zon - tal evo lu tion is prob a bly due to a par ti tion co ef fi cient of Sr

be tween plagioclase and melt close to 2 and a liq uids min eral as sem blage con tain ing ca. 50% plagioclase (the main bearer of Sr), thus giv ing a bulk par ti tion co ef fi cient close to 1. Zn, V and Co show a sys tem atic de crease with SiO

2

(Figs. 8, 9) at the scale of the var i ous drill-cores and within each core. This is

Fig. 10. Spidergrams for rocks from the Mazury com plex nor mal ized to ORG (ocean ridge gran ite)

(18)

50 Bogusław Bagiński, Jean-Clair Duchesne, Jacqueline Vander Auwera, Hervé Martin and Janina Wiszniewska

Fig. 11. Chondrite nor mal ized REE dis tri bu tion in the stud ied rocks from the Mazury com plex

(19)

mostly due to a con stant sub trac tion of mafic min er als in the frac tional crys tal li za tion pro cess or to mix ing with a leucogranitic melt.

REE EARTH ELEMENTS

Each group of rocks show sim i lar REE dis tri bu tions and ORG-nor mal ized spidergrams (Fig. 10), which cor rob o rates their con san guin ity, as in ferred by Lorenc and Wiszniewska (1999). Each group of rocks has, how ever, its own sig na ture when con sid er ing REE amounts and spidergrams (Fig. 11).

More over, the small range of vari a tion in REE and other in - com pat i ble el e ments in each mas sif con firms that frac tional crystallisation has only played a sub or di nate role in in ter nal dif - fer en ti a tion (ex cept for Łanowicze). More or less pro nounced Nb and Zr anom a lies can be ob served in all the mas sifs. The Nb anom aly is clas si cally in ter preted as re flect ing a crustal in put or in flu ence, but this can also re sult from Nb-rich min eral frac - tion ation. The Zr neg a tive anom aly is prob a bly due to zir con frac tion ation.

SUGGESTIONS FOR FURTHER RESEARCH

These new data sup port our work ing hy poth e sis which pro - poses that the dif fer ent mas sifs rep re sent dif fer ent cogenetic magma batches, each of them hav ing slightly evolved by dif - fer en ti a tion in magma cham bers at the level of fi nal em place - ment. As the pa ren tal mag mas grossly de fine a liq uid line of de scent and be cause most of their geo chem i cal char ac ter is tics

are sim i lar (for in stance par al lel REE pat terns and spidergrams), we also put for ward the work ing hy poth e sis that they were gen er ated by dif fer ent de grees of par tial melt ing of a unique source. If it is ac cepted that the liq uid line of de scent re - pro duces the po si tion of a cotectic line in a phase di a gram at the P,T, fO

2

con di tions of melt ing, it would be in ter est ing to in ves - ti gate whether the vari a tion from batch to batch re sults from vari a tion of po si tion of the cotectic line with pres sure and other in ten sive vari ables (fO

2

, etc.). Mixing with anatectic liq uids must also be taken into con sid er ation. The source rocks should have a rel a tively ho mo ge neous modal com po si tion re sult ing in a mo not o nous REE dis tri bu tion. Sim i lar ities with the Rogaland jotunites (Nor way) point to a source made up of a se ries of deep crustal rocks of ba sic com po si tion, ei ther gabbronoritic or amphibolitic.

The prob lems that we have just out lined here re quire fur ther in ves ti ga tion. Iso tope geo chem is try, mod el ling of par tial melt - ing pro cess and cal cu la tion of min eral as sem blages re spon si ble for the frac tion ation in each batch should help in de ci pher ing the ge netic pro cesses and the na ture of the source.

Ac knowl edge ments. This work was sup ported partly by Na tional Com mit tee for Sci en tific Re search, grant no.

6.20.9316.00.0 for Dr. Janina Wiszniewska and grant no.

6P04D02714 for Dr. Bo gusław Bagiński and Dr. Janina Wiszniewska. Dr. Bo gusław Bagiński has bene fited from a Bel gian CGRI grant to sup port a pe riod of work at the Uni ver - sity of Liége. The anal y ses were done at the Pol ish Geo log i cal In sti tute by I. Iwasińska-Budzyk and at the “Collectif Interinstitutionel de Géochimie Instrumentale” (Uni ver sity of Liége) by G. Bologne.

REFERENCES

BAGIŃSKI B., BOGDANOVA S. V. and WISZNIEWSKA J. (1999) — The first re sults of P-T con di tions of the em place ment of the multiphase Kościerzyna in tru sion. Ab stract in: Sev enth EUROBRIDGE Work shop “Be tween EUROBRIDGE and TESZ”

Suwałki-Szelment, Po land 26–30 May 1999: 3–4.

BAGIŃSKI B., DUCHESNE J. C., MARTIN H. and WISZNIEWSKA J.

(2000) — AMCG rock geo chem is try from the Mazury Com plex (NE Po land): A pre lim i nary ac count. In: Ab stract Vol ume of Transbaltic Pre cam brian Cor re la tions. Field con fer ence in the frame work of the VISBY PROGRAMME and the EUROBRIDGE pro ject. Born - holm-Blekinge 17–30 July 2000.

BOGDANOVA S. V., PAGE L. M., SKRIDLAITE G. and TARAN L. N.

(1996) — The Pro tero zoic tectonothermal his tory of the west ern part of the East Eu ro pean Craton: Im pli ca tions from 40Ar/39Ar geo chron ol - ogy. GFF, 118. Jubille Is sue.

BROWN G. C. (1981) — Space and time in gran ite plutonism. Philos.

Trans. Roy. Soc. Lon don, Ser. A 301: 321–336.

CLAESSON S. and RYKA W. (1999) — Nd model ages of the Pre cam - brian crys tal line base ment of NE Po land. Sev enth EUROBRIDGE Work shop “Be tween EUROBRIDGE and TESZ”, ab stract vol ume, Pol ish Geo log i cal In sti tute, War saw: 17–19.

CLAESSON S., SUNDBLAD K., RYKA W., MOCZYDŁOWSKA M. and REINFRANK R. (1995a) — Pro tero zoic ages from the Pre cam brian of Po land – re sults and im pli ca tions. Pre cam brian of Eu rope (eds. V.

A. Glebovitsky and A.B. Kotov: MAEGS-9). Ab stract Vol ume: 21.

CLAESSON S., SUNDBLAD K., RYKA W. and MOTUZA G. (1995b) — The Mazury Com plex in N Po land, rapakivi gran ites and the SE-wards ex ten sion of the Fennoscandian Shield. 22nd Nordic Geo log i cal Win - ter Meet ing, Turku-Abo. Fin land.

CYMERMAN Z. and WISZNIEWSKA J. (1999) — Pre cam brian of the Pol ish part of the East Eu ro pean Craton. Ab stract in: Sev enth EUROBRIDGE Work shop “Be tween EUROBRIDGE and TESZ”, Suwałki–Szelment 26–30 May 1999: 20–22.

DEBON F. and LE FORT P. (1988) — A cationic clas si fi ca tion of com mon plutonic rocks and their mag matic as so ci a tions: prin ci ples, method, ap pli ca tions. Bull. Miner., 111: 493–510.

DEPCIUCH T., LIS J. and SYLWESTRZAK H. (1975) — K-Ar age of the rocks of the crys tal line base ment of north-east Po land (in Pol ish with Eng lish sum mary). Kwart. Geol., 19 (4): 759–778.

DUCHESNE J. C. and WILMART E. (1997) — Ig ne ous charnockites and re lated rocks from the Bjerkreim-Sokndal lay ered in tru sion (South - west Nor way): a jotunite (hyperstene monzodiorite) — de rived A-type granitoid suite. J. Petrol., 38: 337–369.

KILPATRICK J. A. and ELLIS D. J. (1992) — C-type mag mas: ig ne ous charnockites and their ex tru sive equiv a lents. Trans. Roy. Soc.

Edinburgh, Earth Sc., 83: 155–164.

KUBICKI S. and RYKA W. (1982) — Geo log i cal At las of Crys tal line Base ment in Pol ish Part of the East-European Plat form. Wyd. Geol.

Warszawa.

LIÉGEOIS J. P. and BLACK R. (1987) — Al ka line magmatism sub se quent to col li sion in the Pan-African belt of the Adrar des Iforas. In: Al ka line

(20)

Ig ne ous Rocks (eds. J. G. Fitton and B. G. J. Upton). Geol. Soc.

Blackwell: 381–401.

LORENC W. M. and WISZNIEWSKA J. (1999) — The Mazury Com plex:

one mag matic in flux or more? Ab stract in: Sev enth EUROBRIDGE Work shop “Be tween EUROBRIDGE and TESZ”, Suwałki–Szelment 26–30 May 1999: 66–68.

MORGAN J. W., STEIN H. J., HANNAH J. L., MARKEY R. J. and WISZNIEWSKA J. (2000) — Re-Os study of Fe-Ti-V ox ide and Fe-Cu-Ni sul fide deposits, Suwałki anorthosite mas sif, northeast Po - land. Miner. Deposita, 35: 391–401.

RICKWOOD P. C. (1989) — Bound ary lines within pet ro logic di a grams which use ox ides of ma jor and mi nor el e ments. Lithos, 22: 247–264.

RYKA W. (1984) — Pre cam brian evo lu tion of the East Eu ro pean Plat form in Po land. Biul. Państw. Inst. Geol., 347: 18–28.

RYKA W. (1993) — Crys tal line base ment of the Pol ish part of the Bal tic Sea. Geol. Quart., 37 (3): 329–344.

SKRIDLAITE G., WISZNIEWSKA J. and DUCHESNE J.-C. (2000) — Rapakivi gran ite-anorthosite suite in NE Po land and south ern Lith u a - nia. In: Ab stract Vol ume of the 31 IGC in Rio de Ja neiro 6–17 Au gust 2000.

STEIN H. J., MORGAN J. W., MARKEY R. J. and WISZNIEWSKA J.

(1998) — A Re-Os study of the Suwałki an or tho site mas sif, north east Po land. Geophys. J., 20 (4): 111–114.

SUNDBLAD K., MANSFELD J., MOTUZA G., AHL M. and CLAESSON S. (1994) — Ge ol ogy, geo chem is try and age of a Cu-Mo-bearing gran ite at Kabeliai, south ern Lith u a nia. Miner. Petrol., 50: 43–57.

VANDER AUWERA J., BOLOGNE G., ROELANDTS I. and DUCHESNE J. C. (1998a) — In duc tively cou pled plasma-mass spec -

trom e try (ICP-MS) anal y sis of sil i cate rocks and min er als. Geol.

Belgica, 1: 49–53.

VANDER AUWERA J., LONGHI J. and DUCHESNE J. C. (1998b) — A liq uid line of de scent of the jotunite (hypersthene monzodiorite) suite.

J. Petrol., 39: 439–468.

WISZNIEWSKA J. (2000) — Stron tium iso tope ra tios and REE geo chem - is try in the Suwałki anorthosites, NE Po land. Geol. Quart., 44 (2):

183–186.

WISZNIEWSKA J., DUCHESNE J. C., CLAESSON S., STEIN H. and MORGAN J. (1999) — Geo chem i cal con strains on the or i gin of the Suwałki an or tho site mas sif and re lated Fe-Ti-V ores, NE Po land (ab - stract). EUG 10 J. Conf. Abstr., 4: 686.

WISZNIEWSKA J. and STEIN H. (2000) — Re-Os ages for the Suwałki ore de pos its, NE Po land. Zastosowanie izotopów w geologii.

Ogólnopolska Konferencja. Kraków 12 luty 2000.

WISZNIEWSKA J.,WYBRANIEC S. and BOGDANOVA S. (2000) — Com bined geo log i cal and geo phys i cal char ac ter is tics of AMCG com - plexes in NE Po land. In: Ab stract Vol ume of Transbaltic Pre cam brian Cor re la tions. Field con fer ence in the frame work of the VISBY PROGRAMME and the EUROBRIDGE pro ject, Born holm-Blekinge 17–30 July 2000: 7–8.

WISZNIEWSKA J., WYBRANIEC S., CIEŚLA E., CYMERMAN Z., BAGIŃSKI B. and GUTERCH A. (1998) — Geo phys i cal and geo log - i cal in ves ti ga tions in Pol ish part of East Eu ro pean Craton (EEC). Ab - stract for the Eurobridge Work shop Tallin, Es to nia 2–5 June 1998:

53–54.

ZNOSKO J. (1998) — Tec tonic At las of Po land. Państw. Inst. Geol.

Warszawa.

52 Bogusław Bagiński, Jean-Clair Duchesne, Jacqueline Vander Auwera, Hervé Martin and Janina Wiszniewska

Cytaty

Powiązane dokumenty

The modified SAR procedure (Murray and Wintle, 2003) was used for equivalent dose determination (see Table 8.1 for measurement details). In this protocol the luminescence response

1A – lo ca tion of the sam ple site in SW Po land; B – sim pli fied geo log i cal map of the west ern mar gin of the Up per Silesia Block (mod i fied af ter ¯aba et al., 2005)

A new mag netic anom aly map of Po land and its con tri bu tion to the rec og ni tion of crys tal - line base ment rocks. The data com pi la tion and fur ther pro cess ing pro ce

A – K-feld spar (Kfs) in the Górka Sobocka gran ite with in clu sion of plagioclase (Pl); nu mer ous rounded quartz (Qz) in clu sions are pres ent both in microcline and plagioclase;

A 3D model of the de pos its in the Nowodwór-Piaski area is con structed on the ba sis of out crop and GPR data with the use of mul ti ple-point sta tis ti cal meth - od ol ogy to

They may be oo1l-ed, the effects Q~ .either dendritit growth ofOrysta~ orincomp1ete sea1ing of melt inclusions.. Someti;mes in'te:rpretaUon df

As il lus trated in Fig ures 7A and B, the ages of po ten tial source rocks from prox i mal Svecofennian ter ranes of Fennoscandia, as well as ig ne ous suites from dis tal

Thc follow~ng scquencc llas bccn obscnrcd: rnethanc inclusions displaying characteristic fcaturcs duc to crystallography, lighl hydrocarbons, cornplcx inclusions with a