• Nie Znaleziono Wyników

DG408-2

N/A
N/A
Protected

Academic year: 2022

Share "DG408-2"

Copied!
12
0
0

Pełen tekst

(1)

Vishay-Siliconix, 2201 Laurelwood Road, Santa Clara, CA 95054  Phone (408)988-8000  FaxBack (408)970-5600  www.siliconix.com S-56533Rev. D, 30-Mar-98 Siliconix was formerly a division of TEMIC Semiconductors

8-Ch/Dual 4-Ch High Performance CMOS Analog Multiplexers

Features Benefits Applications

 Low On-Resistance—rDS(on): 100 

 Low Charge Injection—Q: 20 pC

 Fast Transition Time—tTRANS: 160 ns

 Low Power—ISUPPLY: 10 A

 Single Supply Capability

 44-V Supply Max Rating

 Reduced Switching Errors

 Reduced Glitching

 Improved Data Throughput

 Reduced Power Consumption

 Increased Ruggedness

 Superior to DG508/509A

 Wide Supply Ranges (5 V to 20 V)

 Data Acquisition Systems

 Audio Signal Routing

 ATE Systems

 Battery Powered Systems

 High Rel Systems

 Single Supply Systems

 Medical Instrumentation

Description

The DG408 is an 8-channel single-ended analog multiplexer designed to connect one of eight inputs to a common output as determined by a 3-bit binary address (A

0

, A

1

, A

2

). The DG409 is a dual 4-channel differential analog multiplexer designed to connect one of four differential inputs to a common dual output as determined by its 2-bit binary address (A

0

, A

1

). Break-before-make switching action protects against momentary crosstalk between adjacent channels.

An on channel conducts current equally well in both directions. In the off state each channel blocks voltages up to the power supply rails. An enable (EN) function allows the user to reset the multiplexer/demultiplexer to all switches off for stacking several devices. All control

inputs, address (A

x

) and enable (EN) are TTL compatible over the full specified operating temperature range.

Applications for the DG408/409 include high speed data acquisition, audio signal switching and routing, ATE systems, and avionics. High performance and low power dissipation make them ideal for battery operated and remote instrumentation applications.

Designed in the 44-V silicon-gate CMOS process, the absolute maximum voltage rating is extended to 44 V.

Additionally, single supply operation is also allowed. An epitaxial layer prevents latchup.

For additional information please see Technical Article TA201.

Functional Block Diagrams and Pin Configurations

S3

A0

S6

D S4

A1

S8 S7 EN

Dual-In-Line SOIC and TSSOP

A2

V– GND

S1 V+

S2 S5

Decoders/Drivers 1

2 3 4 5 6 7

16 15 14 13 12 11 10

Top View

8 9

A0

Da

A1

Db

EN GND

V– V+

S1a S1b

S2a S2b

S3a S3b

S4a S4b

Dual-In-Line SOIC and TSSOP

Decoders/Drivers 1

2 3 4 5 6 7

16 15 14 13 12 11 10

Top View

8 9

DG408 DG409

Updates to this data sheet may be obtained via facsimile by calling Siliconix FaxBack, 1-408-970-5600. Please request FaxBack document #70062.

Applications information may also be obtained via FaxBack, request document #70600.

(2)

Vishay-Siliconix, 2201 Laurelwood Road, Santa Clara, CA 95054 S Phone (408)988-8000 S FaxBack (408)970-5600 S www.siliconix.com S-56533*Rev. D, 30-Mar-98 Siliconix was formerly a division of TEMIC Semiconductors

Functional Block Diagrams and Pin Configurations (Cont’d)

Truth Table — DG408 Truth Table — DG409

A2 A1 A0 EN

On

Switch A1 A0 EN On Switch

X X X 0 None X X 0 None

0 0 0 1 1 0 0 1 1

0 0 1 1 2 0 1 1 2

0 1 0 1 3 1 0 1 3

0 1 1 1 4 1 1 1 4

1 0 0 1 5

1 0 1 1 6 Logic “0” = VALv 0.8 V

Logic “1” = VAHw 2 4 V

1 1 0 1 7 Logic “1” = VAHw 2.4 V

X = Don’t Care

1 1 1 1 8

Ordering Information — DG408 Ordering Information — DG409

Temp Range Package Part Number Temp Range Package Part Number

16-Pin Plastic DIP DG408DJ 16-Pin Plastic DIP DG409DJ

–40 to 85_C 16-Pin SOIC DG408DY –40 to 85_C 16-Pin SOIC DG409DY

16-Pin TSSOP DG408DQ 16-Pin TSSOP DG409DQ

DG408AK DG409AK

–55 to 125_C 16-Pin CerDIP DG408AK/883

–55 to 125_C 16-Pin CerDIP DG409AK/883 –55 to 125_C

5962-920401MEA –55 to 125_C

5962-920402MEA

LCC-20* 5962-920401M2A LCC-20* 5962-920402M2A

*Block Diagram and Pin Configuration not shown.

Absolute Maximum Ratings

Voltage Referenced to V–

V+ . . . 44 V GND. . . 25 V Digital Inputsa, VS, VD . . . (V–) –2 V to (V+) +2 V or 20 mA, whichever occurs first Current (Any Terminal) . . . 30 mA Peak Current, S or D

(Pulsed at 1 ms, 10% Duty Cycle Max). . . 100 mA Storage Temperature (AK Suffix) . . . –65 to 150_C (DJ, DY Suffix). . . –65 to 125_C Power Dissipation (Package)b

16-Pin Plastic DIPc . . . 450 mW

16-Pin Narrow SOIC and TSSOPd . . . 600 mW 16-Pin CerDIPe . . . 900 mW LCC-20f . . . 750 mW

Notes

a. Signals on SX, DX or INX exceeding V+ or V– will be clamped by internal diodes. Limit forward diode current to maximum current ratings.

b. All leads soldered or welded to PC board.

c. Derate 6 mW/_C above 75_C.

d. Derate 7.6 mW/_C above 75_C.

e. Derate 12 mW/_C above 75_C.

f. Derate 10 mW/_C above 75_C.

(3)

Vishay-Siliconix, 2201 Laurelwood Road, Santa Clara, CA 95054 S Phone (408)988-8000 S FaxBack (408)970-5600 S www.siliconix.com S-56533*Rev. D, 30-Mar-98 Siliconix was formerly a division of TEMIC Semiconductors

Specifications a

Test Conditions Unless Otherwise Specified

A Suffix

–55 to 125_C D Suffix –40 to 85_C

Parameter Symbol

V+ = 15 V, V– = –15 V

VAL = 0.8 V, VAH = 2.4 Vf Tempb Typc Mind Maxd Mind Maxd Unit Analog Switch

Analog Signal Rangee VANALOG Full –15 15 –15 15 V

Drain-Source

On-Resistance rDS(on) VD = "10 V, IS = –10 mA Room Full

40 100

125

100

125 W

rDS(on) Matching

Between Channelsg DrDS(on) VD = "10 V Room 15 15 %

Source Off

Leakage Current IS(off) VS = "10 V, VD = #10 V VEN = 0 V

Room Full

–0.5 –50

0.5 50

–0.5 –5

0.5 5

Drain Off Leakage

C ID(off)

VD = "10 V VS = #10 V

DG408 Room Full

–1 –100

1 100

–1 –20

1 g 20

Current ID(off) VS = #10 V

VEN = 0 V DG409 Room

Full

–1 –50

1 50

–1 –10

1

10 nA

Drain On Leakage

C ID(on)

VS = VD ="10 V Sequence Each

DG408 Room Full

–1 –100

1 100

–1 –20

1 g 20

Current ID(on) Sequence Each

Switch On DG409 Room

Full

–1 –50

1 50

–1 –10

1 10 Digital Control

Logic High Input Voltage VINH Full 2.4 2.4

Logic Low Input Voltage VINL Full 0.8 0.8 VV

Logic High Input Current IAH VA = 2.4 V, 15 V Full –10 10 –10 10

Logic Low Input Current IAL VEN = 0 V, 2.4 V, VA = 0 V Full –10 10 –10 10 mAmA

Logic Input Capacitance Cin f = 1 MHz Room 8 pF

Dynamic Characteristics

Transition Time tTRANS See Figure 2 Full 160 250 250

Break-Before-Make

Interval tOPEN See Figure 4 Room 10 10

ns Enable Turn-On Time tON(EN)

See Figure 3

Room Full

115 150

225

150 ns

Enable Turn-Off Time tOFF(EN)

g

Room 105 150 150

Charge Injection Q CL = 10 nF, VS = 0 V Room 20 pC

Off Isolationh OIRR VEN = 0 V, RL = 1 kW

f = 100 kHz Room –75 dB

Source Off Capacitance CS(off) VEN = 0 V, VS = 0 V, f = 1 MHz Room 3

Drain Off Capacitance CD(off) DG408 Room 26

Drain Off Capacitance CD(off)

VEN = 0 V, VD = 0 V f 1 MH

DG409 Room 14 pF

Drain On Capacitance CD(on)

EN , D

f = 1 MHz DG408 Room 37

Drain On Capacitance CD(on)

DG409 Room 25

Power Supplies

Positive Supply Current I+

VEN= VA= 0 V or 5 V Full 10 75 75

Negative Supply Current I– VEN = VA = 0 V or 5 V mA

Full 1 –75 –75 mA

Positive Supply Current I+

VEN = 2.4 V, VA = 0 V

Room Full

0.2 0.5

2

0.5

2 mA

Negative Supply Current I– Full –500 –500 mA

(4)

Vishay-Siliconix, 2201 Laurelwood Road, Santa Clara, CA 95054 S Phone (408)988-8000 S FaxBack (408)970-5600 S www.siliconix.com S-56533Rev. D, 30-Mar-98 Siliconix was formerly a division of TEMIC Semiconductors

Specifications a for Single Supply

Test Conditions Unless Otherwise Specified

A Suffix

–55 to 125_C D Suffix –40 to 85_C

Parameter Symbol

V+ = 12 V, V– = 0 V

VAL = 0.8 V, VAH = 2.4 Vf Tempb Typc Mind Maxd Mind Maxd Unit Analog Switch

Drain-Source

On-Resistancee, f rDS(on) VD = 3 V, 10 V, IS = – 1 mA Room 90 W

Dynamic Characteristics Switching Time of

Multiplexere tTRANS VS1 = 8 V, VS8 = 0 V, VIN = 2.4 V Room 180 Enable Turn On Timee tON(EN) VINH = 2.4 V, VINL = 0 V

V 5 V

Room 180 ns

Enable Turn Off Timee tOFF(EN)

INH , INL

VS1 = 5 V Room 120

Charge Injectione Q CL = 1 nF, VS= 6 V, RS = 0 Room 5 pC

Notes

a. Refer to PROCESS OPTION FLOWCHART.

b. Room = 25_C, Full = as determined by the operating temperature suffix.

c. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.

d. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.

e. Guaranteed by design, not subject to production test.

f. VIN = input voltage to perform proper function.

g. DrDS(on) = rDS(on) Max – rDS(on) Min.

h. Worst case isolation occurs on Channel 4 do to proximity to the drain pin.

(5)

Vishay-Siliconix, 2201 Laurelwood Road, Santa Clara, CA 95054  Phone (408)988-8000  FaxBack (408)970-5600  www.siliconix.com S-56533Rev. D, 30-Mar-98 Siliconix was formerly a division of TEMIC Semiconductors

Typical Characteristics

Source/Drain Capacitance vs. Analog Voltage

(pF)CS, D

VANALOG – Analog Voltage (V)

0 15

–15 0 20 40 80

60

V+ = 15 V V– = –15 V

CD(off)

CS(off)

–10 –5 5 10

Drain Leakage Current vs. Source/Drain Voltage (Single 12-V Supply)

(pA)ID

VD – Drain Voltage (V)

12

0 2 4 6 8 10

–60 –40 –20 60

40

0 20

DG408 ID(off) DG409 ID(off)

DG409 ID(on)

DG408 ID(on) VS = 0 V for ID(off)

VS = VD for ID(on)

ÉÉÉÉÉÉÉÉÉÉÉÉÉ

ÉÉÉÉÉÉÉÉÉÉÉÉÉ

ÉÉÉÉÉÉÉÉÉÉÉÉÉ

ÉÉÉÉÉÉÉÉÉÉÉÉÉ

ÉÉÉÉÉÉÉÉÉÉÉÉÉ

ÉÉÉÉÉÉÉÉÉÉÉÉÉ

Input Switching Threshold vs. Supply Voltage

(V)INV

VSUPPLY (V)

12 20

4 8 16

0.0 0.5 2.0

1.5

1.0

Negative Supply Current vs. Switching Frequency

I–

Switching Frequency (Hz)

10 k 10 M

100 1 k 100 k 1 M

VSUPPLY = 15 V –100 mA

–1 mA

–100 A –10 A

–1 A

–0.1 A –10 mA

VEN = 2.4 V

VEN = 0 V or 5 V CD(on)

DG408 ID(on), ID(off)

Source Leakage Current vs. Source Voltage Drain Leakage Current vs. Source/DrainVoltage

(nA)IS(off)

(pA)ID

VD or VS — Drain or Source Voltage (V) VS – Source Voltage (V)

0 15

–15 –140

–60 20 100

60

–20

–100

V+ = 15 V V– = –15 V VS = –VD for ID(off) VD = VS(open) for ID(on)

DG409 ID(off)

–10 –5 5 10 –15 0 15

–10 0 10 20

15

5

–5

V+ = 15 V V– = –15 V

V+ = 12 V V– = 0 V

–10 –5 5 10

DG409 ID(on)

(6)

Vishay-Siliconix, 2201 Laurelwood Road, Santa Clara, CA 95054 S Phone (408)988-8000 S FaxBack (408)970-5600 S www.siliconix.com S-56533Rev. D, 30-Mar-98 Siliconix was formerly a division of TEMIC Semiconductors

Typical Characteristics (Cont’d)

Positive Supply Current vs. Switching Frequency ISUPPLY vs. Temperature

I+

Switching Frequency (Hz)

10 k 10 M

100 1 k 100 k 1 M

VSUPPLY = 15 V 100 mA

10 mA

1 mA

100 mA

10 mA

VEN = 2.4 V

VEN = 0 V or 5 V

I+, I–

Temperature (_C)

125

–55 5 45 85

VSUPPLY = 15 V VA = 0 V VEN = 0 V I+

–(I–) 100 mA

1 mA 100 nA

10 nA 1 nA 100 pA 10 pA 10 mA

–35 –15 25 65 105

Charge Injection vs. Analog Voltage Positive Supply Current vs. Temperature (DG408)

Q (pC)

I+ (A)

Temperature (_C) VS – Source Voltage (V)

5 15 20

10

125

–55 5 45 85

0

V+ = 15 V V– = –15 V VIN = 0 V VEN = 0 V

–35 –15 25 65 105

–10 30 50 90

70

40

0 80

60

20 10

0 15

–15 –10 –5 5 10

V+ = 15 V V– = –15 V

V+ = 12 V V– = 0 V CL = 10,000 pF

VIN = 5 Vp-p

rDS(on) vs. VD and Supply rDS(on) vs. VD and Supply (Single Supply)

rDS(on)() rDS(on)()

VD – Drain Voltage (V) VD – Drain Voltage (V)

0 40 100

60 80 120

20

–20 –16 –12 –8 –4 0 4 8 12 16 20

5 V

8 V10 V

12 V

20 V

22 0

0 40 100

60 140 160

80 120

20

4 8 12 16 20

V+ = 7.5 V

10 V 12 V

15 V 20 V

22 V V– = 0 V

15 V

(7)

Vishay-Siliconix, 2201 Laurelwood Road, Santa Clara, CA 95054 S Phone (408)988-8000 S FaxBack (408)970-5600 S www.siliconix.com S-56533Rev. D, 30-Mar-98 Siliconix was formerly a division of TEMIC Semiconductors

Typical Characteristics (Cont’d)

rDS(on) vs. VS and Temperature rDS(on) vs. VS and Temperature (Single Supply)

rDS(on)()W rDS(on)()W

VS – Source Voltage (V) VS – Source Voltage (V)

0 15

–15 0 40 60 80

50

10 70

30 20

V+ = 15 V V– = –15 V

125_C 85_C 25_C

–55_C

–10 –5 5 10 0 4 8 12

10 30 50 70 90 110 130

V+ = 12 V V– = 0 V –55_C

–40_C 0_C 125_C

85_C

25_C

2 6 10

Off Isolation and Crosstalk vs. Frequency Insertion Loss vs. Frequency

LOSS (dB)

(dB)

f – Frequency (Hz) f – Frequency (Hz)

10 k 10 M

–30 –70 –90

–50

100 1 k 100 k 1 M

–110

100 M –130

–150

V+ = 15 V V– = –15 V RL = 1 kW

Off-Isolation

Crosstalk

10 M –5

–2 1

–1 0

–4 –3

–6

V+ = 15 V V– = –15 V Ref. 1 Vrms

RL = 50 W RL = 1 kW

10 100 1 k 10 k 100 k 1 M 100

Switching Time vs. Single Supply Switching Time vs. Bipolar Supply

t (ns) t (ns)

VSUPPLY (V) VSUPPLY (V)

15 8

100 150 225

175 200 250

125

9 10 11 12 13 14

275

tTRANS

tOFF(EN)

tON(EN)

75 125 200

150 175

100

tOFF(EN) tON(EN)

tTRANS

10 12 14 16 18 20 22

-40_C 0_C

(8)

Vishay-Siliconix, 2201 Laurelwood Road, Santa Clara, CA 95054  Phone (408)988-8000  FaxBack (408)970-5600  www.siliconix.com S-56533*Rev. D, 30-Mar-98 Siliconix was formerly a division of TEMIC Semiconductors

Schematic Diagram (Typical Channel)

Figure 1.

EN A0

S1 D

V+

Sn Decode/ V–

Drive Level

Shift

V–

V+

VREF

AX GND

V+

Test Circuits

Figure 2. Transition Time A1

A0 A2

A1 A0

+15 V

–15 V EN

V+

V–

GND

D

35 pF VO

S1 S2 – S7

S8

50  300 

#10 V

"10 V

+15 V

–15 V EN

V+

V–

GND

35 pF VO

S1 S1a – S4a, Da

S4b

50  300 

#10 V

"10 V

Db

Logic Input

Switch Output

VS8 VO

tTRANS

tr <20 ns tf <20 ns

S8 ON S1 ON

tTRANS 0 V

VS1

50%

90%

90%

3 V 0 V DG408

DG409

(9)

Vishay-Siliconix, 2201 Laurelwood Road, Santa Clara, CA 95054  Phone (408)988-8000  FaxBack (408)970-5600  www.siliconix.com S-56533Rev. D, 30-Mar-98 Siliconix was formerly a division of TEMIC Semiconductors

Test Circuits

Figure 3. Enable Switching Time Logic

Input

Switch Output VO

tr <20 ns tf <20 ns 3 V

0 V

0 V

tOFF(EN) tON(EN)

50%

90%

10%

VO EN

S1

S2 – S8 A0

A1 A2

50  1 k

VO

V+

GND V– D

– 5 V

35 pF –15 V

+15 V

S1b S1a – S4a, Da S2b – S4b

Db EN

A0 A1

50  1 k

VO

V+

GND V–

– 5 V

35 pF –15 V

+15 V DG408

DG409

Figure 4. Break-Before-Make Interval

50%

80%

Logic Input

Switch Output VO

VS

tOPEN

tr <20 ns tf <20 ns

0 V 3 V 0 V

EN V+

GND V–

+5 V

35 pF –15 V

+15 V

+2.4 V

A2 Db, D

All S and Da

300 

VO

50  A1 A0

DG408 DG409

(10)

Vishay-Siliconix, 2201 Laurelwood Road, Santa Clara, CA 95054  Phone (408)988-8000  FaxBack (408)970-5600  www.siliconix.com S-56533Rev. D, 30-Mar-98 Siliconix was formerly a division of TEMIC Semiconductors

Test Circuits

Figure 5. Charge Injection A0

EN

A1 A2

VO V+

GND V–

D

–15 V +15 V Rg

SX

CL 10 nF Channel

Select

3 V 0 V

OFF ON

Logic Input

Switch Output

DVO

DVO is the measured voltage due to charge transfer error Q, when the channel turns off.

Q = CL x DVO

OFF

Figure 6. Off Isolation

Figure 7. Crosstalk RL 1 kW

VO V+

GND V–

–15 V +15 V

A2

D A1

A0 S8 SX

VS

EN Rg = 50 W

Off Isolation = 20 log VOUT VIN VIN

RL

1 kW VO V+

GND V–

–15 V +15 V

A2

D A1

A0

S8 SX VS

EN Rg = 50 W

Crosstalk = 20 log VOUT VIN VIN S1

(11)

Vishay-Siliconix, 2201 Laurelwood Road, Santa Clara, CA 95054  Phone (408)988-8000  FaxBack (408)970-5600  www.siliconix.com S-56533Rev. D, 30-Mar-98 Siliconix was formerly a division of TEMIC Semiconductors

Test Circuits

Figure 8. Insertion Loss

Figure 9. Source Drain Capacitance RL A2 1 k

VO D

Rg = 50 

Insertion Loss = 20 log VOUT A1

VIN A0

VS

S1 V+

GND V–

–15 V +15 V

EN

f = 1 MHz S1

D EN

+15 V

–15 V GND

V+

V–

Meter HP4192A Impedance Analyzer or Equivalent S8

A1 A2

A0 Channel

Select

Application Hints

Overvoltage Protection

A very convenient form of overvoltage protection consists of adding two small signal diodes (1N4148, 1N914 type) in series with the supply pins (see Figure 10).

This arrangement effectively blocks the flow of reverse currents. It also floats the supply pin above or below the normal V+ or V– value. In this case the overvoltage signal actually becomes the power supply of the IC. From the

point of view of the chip, nothing has changed, as long as

the difference V

S

– (V–) doesn’t exceed +44 V. The

addition of these diodes will reduce the analog signal

range to 1 V below V+ and 1 V above V–, but it preserves

the low channel resistance and low leakage

characteristics.

(12)

Vishay-Siliconix, 2201 Laurelwood Road, Santa Clara, CA 95054  Phone (408)988-8000  FaxBack (408)970-5600  www.siliconix.com S-56533Rev. D, 30-Mar-98 Siliconix was formerly a division of TEMIC Semiconductors

Application Hints (Cont’d)

1N4148

DG408

D

V–

V+

1N4148 SX

Vg

Figure 10. Overvoltage Protection Using Blocking Diodes

EN A0 A1

+15 V

(MUX On-Off Control) Analog

Inputs (Outputs)

Clock In

NC

Enable In

Analog Output (Input)

+15 V –15 V

DG408 D

EN GND

DM7493

V+ V–

NC

GND +15 V

8-Channel Sequential Multiplexer/Demultiplexer

Analog Inputs (Outputs)

Analog Outputs (Inputs)

+15 V –15 V

DG409 GND

V+ V–

Differential

Differential

Clock In

NC GND +15 V

NC

6 Reset Enable

Differential 4-Channel Sequential Multiplexer/Demultiplexer

J

K CLK

J

K CLK

CLEAR CLEAR

Q S5

S7 S6

S8 S1

S3 S2

S4

S1a

S3a S2a

S4a

S1b

S3b

S2b

S4b

Da

Db

A0 A1 A2

BIN

AIN r01 r02

QB QC QD

QA 1/2 MM74C73 1/2 MM74C73

Figure 11.

Q

Q Q

Cytaty

Powiązane dokumenty

[r]

Przestrzeń z iloczynem skalarnym (ang. ”inner product space”) to przestrzeń wektorowa nad ciałem F ∈ {R, C}, na której wyróżniono pewien iloczyn skalarny (czyli jest to para

Przestrzeń z iloczynem skalarnym (ang. ”inner product space”) to przestrzeń wektorowa nad ciałem F ∈ {R, C}, na której wyróżniono pewien iloczyn skalarny (czyli jest to para

The simplest guess (considering the linearity of the equations) is to assume that f(ˆr) is proportional to the local velocity of the surface element on the sphere,.. f(ˆr)

Hedetniemi, Defending the Roman Empire, principal talk presented at the Ninth Quadrennial International Conference on Graph Theory, Combina- torics, Algorithms, and

Adding diodes reduces the analog signal range to one diode drop below V+ and one diode drop above V-, but does not affect the devices’ low switch resistance and low

In this paper crystallization studies of low-alloyed construction cast steel were presented for different additions of chromium, nickel and molybdenum modified with vanadium and

Dla jakich sytuacji sk ladanie translacji z obrotem wzgl edem wybranych osi jest przemienne?.