• Nie Znaleziono Wyników

MCO-500

N/A
N/A
Protected

Academic year: 2022

Share "MCO-500"

Copied!
4
0
0

Pełen tekst

(1)

© 1999 IXYS All rights reserved 1 - 4 VRSM VRRM Type

VDSM VDRM

V V

1300 1200 MCO 500-12io1 1500 1400 MCO 500-14io1 1700 1600 MCO 500-16io1 1900 1800 MCO 500-18io1

I

TRMS

= 880 A I

T(AV)M

= 560 A

V

RRM

= 1200-1800 V

15000 16000

1125000 1062000 845000 813000

960 100

1 500

1

1000

120 60 30 10 -40...140 140 -40...125 3000 3600 13000 14400 880 560

Symbol Test Conditions Maximum Ratings

ITRMS TVJ = TVJM A

IT(AV)M TC = 85°C; 180° sine A

ITSM TVJ = 45°C t = 10 ms (50 Hz) A

VR = 0 t = 8.3 ms (60 Hz) A

TVJ = TVJM t = 10 ms (50 Hz) A

VR = 0 t = 8.3 ms (60 Hz) A

I2t TVJ = 45°C t = 10 ms (50 Hz) A2s

VR = 0 t = 8.3 ms (60 Hz) A2s

TVJ = TVJM t = 10 ms (50 Hz) A2s

VR = 0 t = 8.3 ms (60 Hz) A2s

(di/dt)cr TVJ = TVJM repetitive, IT= A A/µs f = 50 Hz, tP = 200 µs

VD = 2/3 VDRM

IG = A, non repetitive, IT = IT(AV)M A/µs diG/dt = A/µs

(dv/dt)cr TVJ = TVJM; VDR = 2/3 VDRM V/µs RGK = ∞; method 1 (linear voltage rise)

PGM TVJ = TVJM tP = 30 µs W

IT = IT(AV)M tP = 500 µs W

PGAV W

VRGM V

TVJ °C

TVJM °C

Tstg °C

VISOL 50/60 Hz, RMS t = 1 min V~

IISOL≤ 1 mA t = 1 s V~

Md Mounting torque (M6) Nm/lb.in.

Terminal connection torque (M8) Nm/lb.in.

Weight Typical including screws g

Features

International standard package

Direct copper bonded Al2O3-ceramic with copper base plate

Planar passivated chips

Isolation voltage 3600 V~

UL registered E 72873

Keyed gate/cathode twin pins

Applications

Motor control, softstarter

Power converter

Heat and temperature control for industrial furnaces and chemical processes

Lighting control

Solid state switches Advantages

Simple mounting

Improved temperature and power cycling

Reduced protection circuits

4.5-7/40-62 11-13/97-115 650

Data according to IEC 60747 refer to a single thyristor/diode unless otherwise stated.

IXYS reserves the right to change limits, test conditions and dimensions

MCO 500

High Power Thyristor Modules

3 5 4 2 3

2 5

4

(2)

© 1999 IXYS All rights reserved 2 - 4

0.01 0.1 1 10

1 10 100

10-3 10-2 10-1 100 101 102 0.1

1 10

IG VG

A

A IG 1: IGT, TVJ = 140°C

2: IGT, TVJ = 25°C 3: IGT, TVJ = -40°C

µs tgd

V

4: PGM = 20 W 5: PGM = 60 W 6: PGM = 120 W IGD, TVJ = 140°C

4 2

1 56

Limit typ.

TVJ = 25°C 3

Fig. 1 Gate trigger characteristics

Fig. 2 Gate trigger delay time

Symbol Test Conditions Characteristic Values

IRRM TVJ = TVJM; VR = VRRM mA

VT IT = A; TVJ = 25°C V

VT0 For power-loss calculations only (TVJ = TVJM) V

rT mΩ

VGT VD = 6 V; TVJ = 25°C V

TVJ = -40°C V

IGT VD = 6 V; TVJ = 25°C mA

TVJ = -40°C mA

VGD TVJ = TVJM; VD = 2/3 VDRM V

IGD TVJ = TVJM; VD = 2/3 VDRM mA

IL TVJ = 25°C; VD = 6 V; tP = µs mA

diG/dt = A/µs; IG= A

IH TVJ = 25°C; VD = 6 V; RGK = ∞ mA

tgd TVJ = 25°C; VD = 1/2 VDRM µs

diG/dt = A/µs; IG = A

tq TVJ = TVJM; VR = 100 V; VD = 2/3 VDRM; tP = 200 µs typ. µs dv/dt = V/µs; IT = A; -di/dt = A/µs

RthJC DC current K/W

RthJK DC current K/W

dS Creeping distance on surface mm

dA Creepage distance in air mm

a Maximum allowable acceleration m/s2

Dimensions in mm (1 mm = 0.0394")

2 3 300 400

0.072 0.096 40

1200 1.3

0.8 0.38

0.25 10

30 400

1 1

300 2

1 1

350

50 500 10

12.7 9.6 50 Optional accessories for modules

Keyed Gate/Cathode twin plugs with wire length = 350 mm, gate = yellow, cathode = red UL 758, style 1385,

CSA class 5851, guide 460-1-1 Type ZY 180 L (L = Left for pin pair 4/5)

MCO 500

52 1049

M8x20

(3)

© 1999 IXYS All rights reserved 3 - 4

MCO 500

0 300 600 900 1200 1500 0

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

0.001 0.01 0.1 1

0 2000 4000 6000 8000 10000 12000 14000

0 200 400 600 800

0 200 400 600 800 1000 1200

0 25 50 75 100 125 150

1 10

105 106 107

0 25 50 75 100 125 150

I2t

ITAVM / IFAVM

IdAVM A

TA

TC s

t ms t

A2s

0 25 50 75 100 125 150

0 100 200 300 400 500 600 700 800 900 1000

°C 80 % VRRM

TVJ = 45°C 50 Hz

TVJ = 140°C

TVJ = 140°C TVJ = 45°C

ITAVM

W Ptot

A °C

RthKA K/W 0.03 0.07 0.12 0.2 0.3 0.4 0.6

°C 6xMCO500

Circuit B6

TA RthKA K/W 180° sin

120°

60°

30°

DC

180° sin 120°

60°

30°

DC VR = 0V

ITSM A

A

0.01 0.02 0.03 0.045 0.06 0.08 0.12 Ptot

W

Fig. 6 Power dissipation versus on- state current and ambient temperature

Fig. 3 Surge overload current

ITSM, IFSM: Crest value, t: duration

Fig. 4 ∫i2dt versus time (1-10 ms) Fig. 5 Maximum forward current at case temperature

Fig. 7 Three phase rectifier bridge:

Power dissipation versus direct output current and ambient temperature

(4)

© 1999 IXYS All rights reserved 4 - 4

MCO 500

Fig.10 Transient thermal impedance junction toheatsink(perthyristor)

0 300 600 900 1200

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

t

ZthJK

s t

10-3 10-2 10-1 100 101 102

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 K/W ZthJC

IRMS Ptot

0 25 50 75 100 125 150

A 6xMCO500 Circuit W3

10-3 10-2 10-1 100 101 102

0.00 0.02 0.04 0.06 0.08 0.10 0.12

DC 180°

120°

60°

30°

DC 180°

120°

60°

30°

°C TA W

K/W

s RthKA K/W 0.01 0.02 0.03 0.045 0.06 0.08 0.12

Fig. 9 Transient thermal impedance junction to case (per thyristor) Fig. 8 Three phase AC-controller:

Power dissipation versus RMS output current and ambient temperature

RthJC for various conduction angles d:

d RthJC (K/W)

DC 0.072

180° 0.0768 120° 0.081

60° 0.092 30° 0.111

Constants for ZthJC calculation:

i Rthi (K/W) ti (s)

1 0.0035 0.0054

2 0.0186 0.098

3 0.0432 0.54

4 0.0067 12

RthJK for various conduction angles d:

d RthJK (K/W)

DC 0.096

180° 0.1

120° 0.105 60° 0.116 30° 0.135

Constants for ZthJK calculation:

i Rthi (K/W) ti (s)

1 0.0035 0.0054

2 0.0186 0.098

3 0.0432 0.54

4 0.0067 12

5 0.024 12

Cytaty

Powiązane dokumenty

5 Power dissipation versus on- state current and ambient temperature (per thyristor or

5 Power dissipation versus on- state current and ambient temperature (per thyristor or

5 Power dissipation versus on- state current and ambient temperature (per

5 Power dissipation versus on- state current and ambient temperature (per thyristor or

5 Power dissipation versus on- state current and ambient temperature (per thyristor or

5 Power dissipation versus on- state current and ambient temperature (per thyristor or

5 Power dissipation versus on- state current and ambient temperature (per thyristor or

5 Power dissipation versus on- state current and ambient temperature (per thyristor or