• Nie Znaleziono Wyników

FEM for continuum dynamics

N/A
N/A
Protected

Academic year: 2021

Share "FEM for continuum dynamics"

Copied!
58
0
0

Pełen tekst

(1)

FEM for continuum dynamics

Piotr Pluciński e-mail: pplucin@L5.pk.edu.pl

Jerzy Pamin

e-mail: jpamin@L5.pk.edu.pl

(2)

Lecture contents

1 Dynamic equilibrium state

2 Free vibrations Beam element

3 Example

(3)

Dynamic equilibrium state

Y Z

X

S

n

t

t d ρb(x, y, z)

ρb d (x, y, z)

ρ¨ u(x, y, z) P

V

Forces

ρb – mass force density vector [N/m 3 ]

ρb d – volume damping force density vector [N/m 3 ] ρ¨ u – inertia force density vector [N/m 3 ]

t – traction force density vector [N/m 2 ]

t d – surface damping force

density vector [N/m 2 ]

(4)

Dynamic equilibrium state

Y Z

X

S

n

t

t d ρb(x, y, z)

ρb d (x, y, z)

ρ¨ u(x, y, z) P

V

Forces

ρb – mass force density vector [N/m 3 ]

ρb d – volume damping force density vector [N/m 3 ] ρ¨ u – inertia force density vector [N/m 3 ]

t – traction force density vector [N/m 2 ]

t d – surface damping force

density vector [N/m 2 ]

(5)

Dynamic equilibrium state

Y Z

X S

n t

t d ρb(x, y, z)

ρb d (x, y, z)

ρ¨ u(x, y, z) P

V

Body equilibrium equations

Z

S

t − t d  dS + Z

V

ρ b − b d − ¨ u dV = 0

Static boundary conditions t − t d = σn where σ – stress tensor Using Green–Gauss–Ostrogradski theorem

Z

S

σndS = Z

V

L T σdV where L – differential operator matrix

(6)

Dynamic equilibrium state

Y Z

X S

n t

t d ρb(x, y, z)

ρb d (x, y, z)

ρ¨ u(x, y, z) P

V

Body equilibrium equations

Z

S

t − t d  dS + Z

V

ρ b − b d − ¨ u dV = 0

Static boundary conditions t − t d = σn where σ – stress tensor

Using Green–Gauss–Ostrogradski theorem Z

S

σndS = Z

V

L T σdV where L – differential operator matrix

(7)

Dynamic equilibrium state

Y Z

X S

n t

t d ρb(x, y, z)

ρb d (x, y, z)

ρ¨ u(x, y, z) P

V

Body equilibrium equations

Z

S

t − t d  dS + Z

V

ρ b − b d − ¨ u dV = 0

Static boundary conditions t − t d = σn where σ – stress tensor Using Green–Gauss–Ostrogradski theorem

Z

S

σndS = Z

V

L T σdV where L – differential operator matrix

(8)

Equilibrium equations

Navier equations Z

V



L T σ + ρ 

b − b d − ¨ u 

dV = 0 ⇐⇒L T σ + ρ 

b − b d − ¨ u 

= 0 ∀P ∈ V

σ ij,j + ρ 

b i − b d i − ¨ u i



= 0

Weak formulation – weighting function w ∼ = δu – kinematically admissible displacement variation

Z

V

(δu) T L T σ + ρ b − b d − ¨ u dV = 0 ∀δu

(9)

Equilibrium equations

Navier equations Z

V



L T σ + ρ 

b − b d − ¨ u 

dV = 0 ⇐⇒L T σ + ρ 

b − b d − ¨ u 

= 0 ∀P ∈ V σ ij,j + ρ 

b i − b d i − ¨ u i



= 0

Weak formulation – weighting function w ∼ = δu – kinematically admissible displacement variation

Z

V

(δu) T L T σ + ρ b − b d − ¨ u dV = 0 ∀δu

(10)

Equilibrium equations

Navier equations Z

V



L T σ + ρ 

b − b d − ¨ u 

dV = 0 ⇐⇒L T σ + ρ 

b − b d − ¨ u 

= 0 ∀P ∈ V σ ij,j + ρ 

b i − b d i − ¨ u i



= 0

Weak formulation – weighting function w ∼ = δu – kinematically admissible displacement variation

Z

V

(δu) T L T σ + ρ b − b d − ¨ u dV = 0 ∀δu

(11)

Equilibrium equations

Navier equations Z

V



L T σ + ρ 

b − b d − ¨ u 

dV = 0 ⇐⇒L T σ + ρ 

b − b d − ¨ u 

= 0 ∀P ∈ V σ ij,j + ρ 

b i − b d i − ¨ u i



= 0

Weak formulation – weighting function w ∼ = δu – kinematically admissible displacement variation (complying with kinematic b.cs)

Z

V

(δu) T L T σ + ρ b − b d − ¨ u dV = 0 ∀δu

− Z

V

(Lδu) T σdV + Z

S

(δu) T σndS + Z

V

(δu) T ρ b − b d − ¨ u dV = 0

(12)

Equilibrium equations

Navier equations Z

V



L T σ + ρ 

b − b d − ¨ u 

dV = 0 ⇐⇒L T σ + ρ 

b − b d − ¨ u 

= 0 ∀P ∈ V σ ij,j + ρ 

b i − b d i − ¨ u i



= 0

Weak formulation – weighting function w ∼ = δu – kinematically admissible displacement variation (complying with kinematic b.cs)

Z

V

(δu) T L T σ + ρ b − b d − ¨ u dV = 0 ∀δu

− Z

V

(Lδu) T σdV + Z

S

(δu) T σn t − t d

dS + Z

V

(δu) T ρ b − b d − ¨ u dV = 0

(13)

Equilibrium equations

Navier equations Z

V



L T σ + ρ 

b − b d − ¨ u 

dV = 0 ⇐⇒L T σ + ρ 

b − b d − ¨ u 

= 0 ∀P ∈ V σ ij,j + ρ 

b i − b d i − ¨ u i



= 0

Weak formulation – weighting function w ∼ = δu – kinematically admissible displacement variation (complying with kinematic b.cs)

Z

V

(δu) T L T σ + ρ b − b d − ¨ u dV = 0 ∀δu

− Z

V

(Lδu) T σdV + Z

S

(δu) T t − t d  dS+

Z

V

(δu) T ρ b − b d − ¨ u dV = 0

(14)

Equilibrium equations

Navier equations Z

V



L T σ + ρ 

b − b d − ¨ u 

dV = 0 ⇐⇒L T σ + ρ 

b − b d − ¨ u 

= 0 ∀P ∈ V σ ij,j + ρ 

b i − b d i − ¨ u i



= 0

Weak formulation – weighting function w ∼ = δu – kinematically admissible displacement variation – it is virtual work principle

Z

V

(δu) T L T σ + ρ b − b d − ¨ u dV = 0 ∀δu Z

V

(Lδu) T σdV = Z

S

(δu) T t − t d  dS + Z

V

(δu) T ρ b − b d − ¨ u dV

(15)

Equilibrium equations

Navier equations Z

V



L T σ + ρ 

b − b d − ¨ u 

dV = 0 ⇐⇒L T σ + ρ 

b − b d − ¨ u 

= 0 ∀P ∈ V σ ij,j + ρ 

b i − b d i − ¨ u i



= 0

Weak formulation – weighting function w ∼ = δu – kinematically admissible displacement variation – it is virtual work principle

Z

V

(δu) T L T σ + ρ b − b d − ¨ u dV = 0 ∀δu

Z

V

(Lδu) T σdV = Z

S

(δu) T t − t d  dS + Z

V

(δu) T ρ b − b d − ¨ u dV

internal virtual work external virtual work

(16)

Equilibrium equation of discretized structure

Equilibrium equation (FEM approximation: u eh (x, t) = N e (x)q e (t))

E

X

e=1

Z

V e

(L e δu e ) T σ e dV e − Z

S e

(δu e ) T 

t e − t de  dS e

− Z

V e

(δu e ) T ρ 

b e − b de − ¨ u e  dV e



= 0

(17)

Equilibrium equation of discretized structure

Equilibrium equation (FEM approximation: u eh (x, t) = N e (x)q e (t))

E

X

e=1

Z

V e

(L e δu e ) T σ e dV e − Z

S e

(δu e ) T 

t e − t de  dS e

− Z

V e

(δu e ) T ρ 

b e − b de − ¨ u e  dV e



= 0

E

X

e=1

Z

V e

(L e N e δq e ) T σ e dV e − Z

S e

(N e δq e ) T 

t e − t de  dS e

− Z

V e

(N e δq e ) T ρ 

b e − b de − ¨ u e  dV e



= 0

(18)

Equilibrium equation of discretized structure

Equilibrium equation

E

X

e=1

Z

V e

(L e δu e ) T σ e dV e − Z

S e

(δu e ) T 

t e − t de  dS e

− Z

V e

(δu e ) T ρ 

b e − b de − ¨ u e  dV e



= 0

E

X

e=1

Z

V e

(L e N e B e

δq e ) T σ e dV e − Z

S e

(N e δq e ) T 

t e − t de  dS e

− Z

V e

(N e δq e ) T ρ 

b e − b de − ¨ u e  dV e



= 0

(19)

Equilibrium equation of discretized structure

Equilibrium equation

E

X

e=1

Z

V e

(L e δu e ) T σ e dV e − Z

S e

(δu e ) T 

t e − t de  dS e

− Z

V e

(δu e ) T ρ 

b e − b de − ¨ u e  dV e



= 0

E

X

e=1

Z

V e

(B e δq e ) T σ e dV e − Z

S e

(N e δq e ) T 

t e − t de  dS e

− Z

V e

(N e δq e ) T ρ 

b e − b de − ¨ u e  dV e



= 0

(20)

Equilibrium equation of discretized structure

Equilibrium equation

E

X

e=1

Z

V e

(L e δu e ) T σ e dV e − Z

S e

(δu e ) T 

t e − t de  dS e

− Z

V e

(δu e ) T ρ 

b e − b de − ¨ u e  dV e



= 0

E

X

e=1

Z

V e

(B e δq e ) T σ e dV e − Z

S e

(N e δq e ) T 

t e − t de  dS e

− Z

V e

(N e δq e ) T ρ 

b e − b de − ¨ u e  dV e



= 0

E

X

e=1

(δq e ) T

Z

V e

B eT σ e dV e − Z

S e

N eT 

t e − t de  dS e

− Z

N eT ρ 

b e − b de − ¨ u e  dV e



= 0

(21)

Equilibrium equation of discretized structure

Equilibrium equation

E

X

e=1

Z

V e

(L e δu e ) T σ e dV e − Z

S e

(δu e ) T 

t e − t de  dS e

− Z

V e

(δu e ) T ρ 

b e − b de − ¨ u e  dV e



= 0

E

X

e=1

Z

V e

(B e δq e ) T σ e dV e − Z

S e

(N e δq e ) T 

t e − t de  dS e

− Z

V e

(N e δq e ) T ρ 

b e − b de − ¨ u e  dV e



= 0

E

X

e=1

( δq e I T e δQ

) T

Z

V e

B eT σ e dV e − Z

S e

N eT 

t e − t de  dS e

− Z

V e

N eT ρ 

b e − b de − ¨ u e  dV e



= 0

(22)

Equilibrium equation of discretized structure

Equilibrium equation

E

X

e=1

Z

V e

(L e δu e ) T σ e dV e − Z

S e

(δu e ) T 

t e − t de  dS e

− Z

V e

(δu e ) T ρ 

b e − b de − ¨ u e  dV e



= 0

E

X

e=1

Z

V e

(B e δq e ) T σ e dV e − Z

S e

(N e δq e ) T 

t e − t de  dS e

− Z

V e

(N e δq e ) T ρ 

b e − b de − ¨ u e  dV e



= 0

E

X

e=1

( I T e δQ) T

Z

V e

B eT σ e dV e − Z

S e

N eT 

t e − t de  dS e

− Z

N eT ρ 

b e − b de − ¨ u e  dV e



= 0

(23)

Equilibrium equation of discretized structure

Equilibrium equation

E

X

e=1

Z

V e

(L e δu e ) T σ e dV e − Z

S e

(δu e ) T 

t e − t de  dS e

− Z

V e

(δu e ) T ρ 

b e − b de − ¨ u e  dV e



= 0

E

X

e=1

Z

V e

(B e δq e ) T σ e dV e − Z

S e

(N e δq e ) T 

t e − t de  dS e

− Z

V e

(N e δq e ) T ρ 

b e − b de − ¨ u e  dV e



= 0 (δQ) T

E

X

e=1

I T eT

Z

V e

B eT σ e dV e − Z

S e

N eT 

t e − t de  dS e

− Z

V e

N eT ρ 

b e − b de − ¨ u e  dV e



= 0

(24)

Equilibrium equation of discretized structure

Equilibrium equation

E

X

e=1

Z

V e

(L e δu e ) T σ e dV e − Z

S e

(δu e ) T 

t e − t de  dS e

− Z

V e

(δu e ) T ρ 

b e − b de − ¨ u e  dV e



= 0

E

X

e=1

Z

V e

(B e δq e ) T σ e dV e − Z

S e

(N e δq e ) T 

t e − t de  dS e

− Z

V e

(N e δq e ) T ρ 

b e − b de − ¨ u e  dV e



= 0 (δQ) T

∀δQ

E

X

e=1

I T eT

Z

V e

B eT σ e dV e − Z

S e

N eT 

t e − t de  dS e

− Z

N eT ρ 

b e − b de − ¨ u e  dV e



= 0

(25)

Equilibrium equation of discretized structure

Equilibrium equation

E

X

e=1

Z

V e

(L e δu e ) T σ e dV e − Z

S e

(δu e ) T 

t e − t de  dS e

− Z

V e

(δu e ) T ρ 

b e − b de − ¨ u e  dV e



= 0

E

X

e=1

Z

V e

(B e δq e ) T σ e dV e − Z

S e

(N e δq e ) T 

t e − t de  dS e

− Z

V e

(N e δq e ) T ρ 

b e − b de − ¨ u e  dV e



= 0

E

X

e=1

I T eT

Z

V e

B eT σ e dV e − Z

S e

N eT 

t e − t de  dS e

− Z

V e

N eT ρ 

b e − b de − ¨ u e  dV e



= 0

(26)

Equilibrium equation of discretized structure

Equilibrium equation

E

X

e=1

I T eT

Z

V e

B eT σ e dV e

 +

E

X

e=1

I T eT

Z

V e

N eT ρ¨ u e dV e

 +

+

E

X

e=1

I T eT

Z

S e

N eT t de dS e + Z

V e

N eT ρb de dV e



=

=

E

X

e=1

I T eT

Z

S e

N eT t e dS e + Z

V e

N eT ρb e dV e



Consideration of kinamatic and constitutive equations linear elasticity: σ = Dε, linear kinematic relation: ε = Lu

σ e = D e L e u e = D e L e N e q e = D e B e T I e Q, u ¨ e = N e ¨ q e = N e T I e Q ¨ viscous damping:

t de = µ d u ˙ e = µ d N e ˙q e = µ d N e T I e Q, ˙ ρb de = µ b u ˙ e = µ b N e ˙q e = µ b N e T I e Q ˙

(27)

Equilibrium equation of discretized structure

Equilibrium equation

E

X

e=1

I T eT

Z

V e

B eT σ e dV e

 +

E

X

e=1

I T eT

Z

V e

N eT ρ¨ u e dV e

 +

+

E

X

e=1

I T eT

Z

S e

N eT t de dS e + Z

V e

N eT ρb de dV e



=

=

E

X

e=1

I T eT

Z

S e

N eT t e dS e + Z

V e

N eT ρb e dV e



Consideration of kinamatic and constitutive equations linear elasticity: σ = Dε, linear kinematic relation: ε = Lu

σ e = D e L e u e = D e L e N e q e = D e B e T I e Q, u ¨ e = N e ¨ q e = N e T I e Q ¨ viscous damping:

t de = µ d u ˙ e = µ d N e ˙q e = µ d N e T I e Q, ˙ ρb de = µ b u ˙ e = µ b N e ˙q e = µ b N e T I e Q ˙

(28)

Equilibrium equation of discretized structure

Equilibrium equation

E

X

e=1

I T eT

Z

V e

B eT D e B e dV e

 I T e Q+

+

E

X

e=1

I T eT

Z

V e

ρN eT N e dV e

 I T e Q+ ¨

+

E

X

e=1

I T eT

Z

S e

µ d N eT N e dS e + Z

V e

µ b N eT N e dV e

 I T e Q = ˙

=

E

X

e=1

I T eT

Z

S e

N eT t e dS e + Z

V e

N eT ρb e dV e



Equilibrium equations – free vibrations w/o damping

M ¨ Q(t) + KQ(t) = 0

(29)

Equilibrium equation of discretized structure

Equilibrium equation

E

X

e=1

I T eT

( Z

V e

B eT D e B e dV e k e

) I T e Q+

+

E

X

e=1

I T eT

( Z

V e

ρN eT N e dV e m e

) I T e Q+ ¨

+

E

X

e=1

I T eT

( Z

S e

µ d N eT N e dS e + Z

V e

µ b N eT N e dV e c e

) I T e Q = ˙

=

E

X

e=1

I T eT

( Z

S e

N eT t e dS e + Z

V e

N eT ρb e dV e f e

)

Equilibrium equations – free vibrations w/o damping

M ¨ Q(t) + KQ(t) = 0

(30)

Equilibrium equation of discretized structure

Equilibrium equation

E

X

e=1

I

T eT k e T I e Q +

E

X

e=1

I

T eT m e T I e Q + ¨

E

X

e=1

I

T eT c e T I e Q = ˙

E

X

e=1

I T eT f e

Equilibrium equations – free vibrations w/o damping

M ¨ Q(t) + KQ(t) = 0

(31)

Equilibrium equation of discretized structure

Equilibrium equation

E

X

e=1

I T eT k e T I e

K e

Q +

E

X

e=1

I

T eT m e T I e M e

Q + ¨

E

X

e=1

I

T eT c e T I e C e

Q = ˙

E

X

e=1

I T eT f e

F e

Equilibrium equations – free vibrations w/o damping

M ¨ Q(t) + KQ(t) = 0

(32)

Equilibrium equation of discretized structure

Equilibrium equation

E

X

e=1

K e Q +

E

X

e=1

M e Q + ¨

E

X

e=1

C e Q = ˙

E

X

e=1

F e

Equilibrium equations – free vibrations w/o damping

M ¨ Q(t) + KQ(t) = 0

(33)

Equilibrium equation of discretized structure

Equilibrium equation

E

X

e=1

K e K

Q +

E

X

e=1

M e M

Q + ¨

E

X

e=1

C e C

Q = ˙

E

X

e=1

F e F

Equilibrium equations – free vibrations w/o damping

M ¨ Q(t) + KQ(t) = 0

(34)

Equilibrium equation of discretized structure

Equilibrium equation

KQ + M ¨ Q + C ˙ Q = F

Equilibrium equations – free vibrations w/o damping

M ¨ Q(t) + KQ(t) = 0

(35)

Equilibrium equation of discretized structure

Equilibrium equation – forced vibrations with damping M ¨ Q(t) + C ˙ Q(t) + KQ(t) = F(t)

M – inertia (mass) matrix C – damping matrix K – stiffness matrix

F – external nodal force vector

Equilibrium equations – free vibrations w/o damping

M ¨ Q(t) + KQ(t) = 0

(36)

Equilibrium equation of discretized structure

Equilibrium equation – forced vibrations with damping M ¨ Q(t) + C ˙ Q(t) + KQ(t) = F(t)

M – inertia (mass) matrix C – damping matrix K – stiffness matrix

F – external nodal force vector

Equilibrium equations – free vibrations w/o damping

M ¨ Q(t) + KQ(t) = 0

(37)

Eigenvibrations

Approximation

u e (x, t) = N e (x)q e (t) = N e (x)q e A sin(ωt + ϕ)

N e – shape function matrix

q e A – eigenvibration amplitude vector ω – angular frequency

ϕ – phase shift ω = 2πf = T

where f, T – frequency and period, respectively

(38)

Free vibrations

Displacement depending on time (vibration)

q e (t) = q e A sin(ωt + ϕ)

q ¨ e (t) = −ω 2 q e A sin(ωt + ϕ) after assembly and substitution into equilibrium equation

K − ω 2 M Q A = 0 equation is satisfied when

det K − ω 2 M = 0

(39)

Free vibrations

Displacement depending on time (vibration)

q e (t) = q e A sin(ωt + ϕ) q ¨ e (t) = −ω 2 q e A sin(ωt + ϕ)

after assembly and substitution into equilibrium equation

K − ω 2 M Q A = 0 equation is satisfied when

det K − ω 2 M = 0

(40)

Free vibrations

equilibrium equation =⇒ eigen problem

q e (t) = q e A sin(ωt + ϕ) q ¨ e (t) = −ω 2 q e A sin(ωt + ϕ) after assembly and substitution into equilibrium equation

K − ω 2 M Q A sin(ωt + ϕ) = 0 ∀t

equation is satisfied when

det K − ω 2 M = 0

(41)

Free vibrations

equilibrium equation =⇒ eigen problem

q e (t) = q e A sin(ωt + ϕ) q ¨ e (t) = −ω 2 q e A sin(ωt + ϕ) after assembly and substitution into equilibrium equation

K − ω 2 M Q A sin(ωt + ϕ) = 0 ∀t

equation is satisfied when

det K − ω 2 M = 0

(42)

Free vibrations

equilibrium equation =⇒ eigen problem

q e (t) = q e A sin(ωt + ϕ) q ¨ e (t) = −ω 2 q e A sin(ωt + ϕ) after assembly and substitution into equilibrium equation

K − ω 2 M Q A = 0

equation is satisfied when

det K − ω 2 M = 0

(43)

Free vibrations

equilibrium equation =⇒ eigen problem

q e (t) = q e A sin(ωt + ϕ) q ¨ e (t) = −ω 2 q e A sin(ωt + ϕ) after assembly and substitution into equilibrium equation

K − ω 2 M Q A = 0 equation is satisfied when

det K − ω 2 M = 0 or Q A = 0

(44)

Free vibrations

equilibrium equation =⇒ eigen problem

q e (t) = q e A sin(ωt + ϕ) q ¨ e (t) = −ω 2 q e A sin(ωt + ϕ) after assembly and substitution into equilibrium equation

K − ω 2 M Q A = 0 equation is satisfied when

det K − ω 2 M = 0

(45)

Free vibrations

Beam element

A, I, ρ

x e z e

0 l e

q 1 e

q 2 e

q 3 e

q 4 e x e z e

i j

Shape functions N e = [N 1 e N 2 e N 3 e N 4 e ]

0 l e

1

x e N 1 e (x e ) = 1 − 3

 x e l e

 2

+ 2

 x e l e

 3

0 l e

1

x e N 3 e (x e ) = 3

 x e l e

 2

− 2 

x e l e

 3

0 l e x e

N 2 e (x e ) = x e h

1 −

 x e l e

i 2

0 l e x e

N 4 e (x e ) = x e

 

x e l e

 2

− 

x e l e

 

(46)

Free vibrations

Stiffness matrix for beam element

k e = Z l e

0

B eT D e B e dx e

B e = LN e , L =

"

− d 2 dx e2

#

, D e = [E e I e ]

k e = E e I e l e3

12 6l e −12 6l e 6l e 4l e2 −6l e 2l e2

−12 −6l e 12 −6l e 6l e 2l e2 −6l e 4l e2

(47)

Free vibrations

Mass (inertia) matrix for beam element

m e = Z l e

0

ρA e N eT N e dx e

µ e = ρA e – mass density per unit length [kg/m]

m e = µ e l e 420

156 22l e 54 −13l e 22l e 4l e2 13l e −3l e2 54 13l e 156 −22l e

−13l e −3l e2 −22l e 4l e2

(48)

Example

Cantilever

E, I, µ, l Q 1 Q 3

Z

K − ω 2 M Q A = 0

 12 -6l -6l 4l 2



− λ 420

 156 -22l -22l 4l 2

  Q A3 Q A4



=  0 0



 12 -6l -6l 4l 2



− λ 420

 156 -22l -22l 4l 2



= 0

⇒ λ 1 = 12.48 λ 2 = 1211.52 ⇒

ω 1 = 3.53 l 2

s EI

µ ω 2 = 34.81

l 2 s

EI

µ

(49)

Example

Cantilever

E, I, µ, l Q 1

Q 2

Q 3

Q 4 X Z

K − ω 2 M Q A = 0

 EI

l 3

12 6l -12 6l 6l 4l 2 -6l 2l 2 -12 -6l 12 -6l 6l 2l 2 -6l 4l 2

− ω 2 µl 420

156 22l 54 -13l 22l 4l 2 13l -3l 2 54 13l 156 -22l -13l -3l 2 -22l 4l 2

 Q A1 Q A2 Q A3 Q A4

=

 0 0 0 0

 12 -6l -6l 4l 2



− λ 420

 156 -22l -22l 4l 2

  Q A3 Q A4



=  0 0



 12 -6l -6l 4l 2



− λ 420

 156 -22l -22l 4l 2



= 0

⇒ λ 1 = 12.48 λ 2 = 1211.52 ⇒

ω 1 = 3.53 l 2

s EI

µ ω 2 = 34.81

l 2 s

EI

µ

(50)

Example

Cantilever

E, I, µ, l Q 1 Q 3

Z

K − ω 2 M Q A = 0

12 6l -12 6l 6l 4l 2 -6l 2l 2 -12 -6l 12 -6l 6l 2l 2 -6l 4l 2

− ω 2 µl 4 EI

1 420

156 22l 54 -13l 22l 4l 2 13l -3l 2 54 13l 156 -22l -13l -3l 2 -22l 4l 2

 Q A1 Q A2 Q A3 Q A4

=

 0 0 0 0

 12 -6l -6l 4l 2



− λ 420

 156 -22l -22l 4l 2

  Q A3 Q A4



=  0 0



 12 -6l -6l 4l 2



− λ 420

 156 -22l -22l 4l 2



= 0

⇒ λ 1 = 12.48 λ 2 = 1211.52 ⇒

ω 1 = 3.53 l 2

s EI

µ ω 2 = 34.81

l 2 s

EI

µ

(51)

Example

Cantilever

E, I, µ, l Q 1

Q 2

Q 3

Q 4 X Z

K − ω 2 M Q A = 0

12 6l -12 6l 6l 4l 2 -6l 2l 2 -12 -6l 12 -6l 6l 2l 2 -6l 4l 2

− ω 2 µl 4 EI

λ 1 420

156 22l 54 -13l 22l 4l 2 13l -3l 2 54 13l 156 -22l -13l -3l 2 -22l 4l 2

 Q A1 Q A2 Q A3 Q A4

=

 0 0 0 0

 12 -6l -6l 4l 2



− λ 420

 156 -22l -22l 4l 2

  Q A3 Q A4



=  0 0



 12 -6l -6l 4l 2



− λ 420

 156 -22l -22l 4l 2



= 0

⇒ λ 1 = 12.48 λ 2 = 1211.52 ⇒

ω 1 = 3.53 l 2

s EI

µ ω 2 = 34.81

l 2 s

EI

µ

(52)

Example

Cantilever

E, I, µ, l Q 1 Q 3

Z

K − ω 2 M Q A = 0

12 6l -12 6l 6l 4l 2 -6l 2l 2 -12 -6l 12 -6l 6l 2l 2 -6l 4l 2

− λ 420

156 22l 54 -13l 22l 4l 2 13l -3l 2 54 13l 156 -22l -13l -3l 2 -22l 4l 2

 Q A1 Q A2 Q A3 Q A4

=

 0 0 0 0

 12 -6l -6l 4l 2



− λ 420

 156 -22l -22l 4l 2

  Q A3 Q A4



=  0 0



 12 -6l -6l 4l 2



− λ 420

 156 -22l -22l 4l 2



= 0

⇒ λ 1 = 12.48 λ 2 = 1211.52 ⇒

ω 1 = 3.53 l 2

s EI

µ ω 2 = 34.81

l 2 s

EI

µ

(53)

Example

Cantilever

E, I, µ, l Q 1

Q 2

Q 3

Q 4 X Z

K − ω 2 M Q A = 0

12 6l -12 6l 6l 4l 2 -6l 2l 2 -12 -6l 12 -6l 6l 2l 2 -6l 4l 2

− λ 420

156 22l 54 -13l 22l 4l 2 13l -3l 2 54 13l 156 -22l -13l -3l 2 -22l 4l 2

 0 0 Q A3 Q A4

=

 0 0 0 0

 12 -6l -6l 4l 2



− λ 420

 156 -22l -22l 4l 2

  Q A3 Q A4



=  0 0



 12 -6l -6l 4l 2



− λ 420

 156 -22l -22l 4l 2



= 0

⇒ λ 1 = 12.48 λ 2 = 1211.52 ⇒

ω 1 = 3.53 l 2

s EI

µ ω 2 = 34.81

l 2 s

EI

µ

(54)

Example

Cantilever

E, I, µ, l Q 1 Q 3

Z

K − ω 2 M Q A = 0

12 6l -12 6l 6l 4l 2 -6l 2l 2 -12 -6l 12 -6l 6l 2l 2 -6l 4l 2

− λ 420

156 22l 54 -13l 22l 4l 2 13l -3l 2 54 13l 156 -22l -13l -3l 2 -22l 4l 2

 0 0 Q A3 Q A4

=

 0 0 0 0

 12 -6l -6l 4l 2



− λ 420

 156 -22l -22l 4l 2

  Q A3 Q A4



=  0 0



 12 -6l -6l 4l 2



− λ 420

 156 -22l -22l 4l 2



= 0

⇒ λ 1 = 12.48 λ 2 = 1211.52 ⇒

ω 1 = 3.53 l 2

s EI

µ ω 2 = 34.81

l 2 s

EI

µ

(55)

Example

Cantilever

E, I, µ, l Q 1

Q 2

Q 3

Q 4 X Z

K − ω 2 M Q A = 0

12 6l -12 6l 6l 4l 2 -6l 2l 2 -12 -6l 12 -6l 6l 2l 2 -6l 4l 2

− λ 420

156 22l 54 -13l 22l 4l 2 13l -3l 2 54 13l 156 -22l -13l -3l 2 -22l 4l 2

 0 0 Q A3 Q A4

=

 0 0 0 0

 12 -6l -6l 4l 2



− λ 420

 156 -22l -22l 4l 2

  Q A3 Q A4



=  0 0



 12 -6l -6l 4l 2



− λ 420

 156 -22l -22l 4l 2



= 0

⇒ λ 1 = 12.48 λ 2 = 1211.52 ⇒

ω 1 = 3.53 l 2

s EI

µ ω 2 = 34.81

l 2 s

EI

µ

(56)

Example

Cantilever

E, I, µ, l Q 1 Q 3

Z

K − ω 2 M Q A = 0

12 6l -12 6l 6l 4l 2 -6l 2l 2 -12 -6l 12 -6l 6l 2l 2 -6l 4l 2

− λ 420

156 22l 54 -13l 22l 4l 2 13l -3l 2 54 13l 156 -22l -13l -3l 2 -22l 4l 2

 0 0 Q A3 Q A4

=

 0 0 0 0

 12 -6l -6l 4l 2



− λ 420

 156 -22l -22l 4l 2

  Q A3 Q A4



=  0 0



 12 -6l -6l 4l 2



− λ 420

 156 -22l -22l 4l 2



= 0 ⇒ λ 1 = 12.48 λ 2 = 1211.52

ω 1 = 3.53 l 2

s EI

µ ω 2 = 34.81

l 2 s

EI

µ

(57)

Example

Cantilever

E, I, µ, l Q 1

Q 2

Q 3

Q 4 X Z

K − ω 2 M Q A = 0

12 6l -12 6l 6l 4l 2 -6l 2l 2 -12 -6l 12 -6l 6l 2l 2 -6l 4l 2

− λ 420

156 22l 54 -13l 22l 4l 2 13l -3l 2 54 13l 156 -22l -13l -3l 2 -22l 4l 2

 0 0 Q A3 Q A4

=

 0 0 0 0

 12 -6l -6l 4l 2



− λ 420

 156 -22l -22l 4l 2

  Q A3 Q A4



=  0 0



 12 -6l -6l 4l 2



− λ 420

 156 -22l -22l 4l 2



= 0 ⇒ λ 1 = 12.48 λ 2 = 1211.52 ⇒

ω 1 = 3.53 l 2

s EI

µ ω 2 = 34.81

l 2 s

EI

µ

(58)

Example

Cantilever

Eigen vibration modes

Free vibration modes are determined from one of two linearly dependent equations upon substitution of relevant eigenvalue.

0 l e

Q A3 = 0.728l·Q A4

Q A4

x e for ω 1

0 l e x e

for ω 2

Q A3 = 0.131l·Q A4

Q A4

Cytaty

Powiązane dokumenty

Tematem kolejnej lekcji jest: woda jako rozpuszczalnik. Do czterech szklanek nalej ok 1/3 objętości wody. Dodaj kolejno substancje: cukier, mąkę, olej i ocet. Zaproponuj jak

Przesyłam do obejrzenia trzy krótkie filmiki dotyczące wakacji. Zapoznajcie się ze słownictwem i zastanówcie się, czy potrafilibyście powiedzieć kilka zdań na temat

Następnie trening na mięśnie brzucha i nie tylko z instruktorem pod linkiem https://www.youtube.com/watch?v=EWg8y4JhGoE. Podziel się swoim treningiem - podaj ćwiczenie

> następnie rozwiązujecie pierwsze pytanie z krzyżówki i znów wykonujecie 4x/3x PADNIJ / POWSTAŃ po czym znów rozwiązujecie kolejne pytanie itd.. Wygodniej gdy

przeprowadzenia konsultacji w charakterze eksperta merytorycznego z ramienia pracodawcy z zakresu kształcenia matematycznego, konsultującego realizację Praktycznych Studenckich

przeprowadzenia wykładu i konsultacji w charakterze eksperta z zakresu zagadnień związanych z edukacją matematyczną w projekcie „Kompetencje na Start UP” w

przeprowadzenia konsultacji w charakterze eksperta merytorycznego z ramienia pracodawcy z zakresu kształcenia matematycznego, konsultującego realizację Praktycznych Studenckich

Celinski, Electronic structure, crystallographic, magnetic, and transport characterization of EuMn2 films, Journal of Applied Physics. 107