• Nie Znaleziono Wyników

FEM for buckling analysis

N/A
N/A
Protected

Academic year: 2021

Share "FEM for buckling analysis"

Copied!
44
0
0

Pełen tekst

(1)

Jerzy Pamin

e-mail: jpamin@L5.pk.edu.pl

(2)

1 Introduction

2 Derivation of FEM equations Frame finite element

3 Example

(3)

forces and decreased by compressive forces.

A sufficiently large compressive force can reduce the bending stiffness to zero and structural buckling (instability mode) occurs.

Assumptions

linear elasticity: σ x = Eε x

static one-parameter load ideal system (no imperfections) equilibrium of buckled configuration

ε x (x) = u 0 (x) − zw 00 (x) + 1

2 (w 0 (x)) 2

w w

kr

λP 1 λP 2

λP 3

x, u z, w

y

(4)

Derivation of FEM equations

Energetic criterion of equilibrium

Φ = U − W Φ – total energy

U – elastic energy: U = 1 2 R

V

ε x σ x dV W – work of external forces: W = Q T P

Q – dof vector (nodal displacement vector)

P – external force vector

(5)

Φ – total energy

U – elastic energy: U = 1 2 R

V

ε x σ x dV W – work of external forces: W = Q T P

Q – dof vector (nodal displacement vector) P – external force vector

Value of (compressive) normal force before buckling

∆l

l = ε x , σ x = N

A , σ x = Eε x , ε x = u 0 =⇒ N (x) = EAu 0 (x)

(6)

Energetic criterion

Elastic energy

U = 1 2 Z

V

ε x σ x dV

U = 1 2

E

X

e=1

( Z

V e

E



u e0 − zw e00 + 1 2 w e02

 2

dV e

)

(7)

Energetic criterion

Elastic energy

U = 1 2 Z

V

ε x σ x

Eε x

dV

U = 1 2

E

X

e=1

( Z

V e

E



u e0 − zw e00 + 1 2 w e02

 2

dV e

)

(8)

Energetic criterion

Elastic energy

U = 1 2 Z

V

2 x dV

U = 1 2

E

X

e=1

( Z

V e

E



u e0 − zw e00 + 1 2 w e02

 2

dV e

)

(9)

Energetic criterion

Elastic energy

U = 1 2 Z

V

2 x dV

U = 1 2 Z

V

E



u 0 − zw 00 + 1 2 w 02

 2

dV

(10)

U = 1 2 Z

V

2 x dV

U = 1 2 Z

V

E



u 0 − zw 00 + 1 2 w 02

 2

dV

Elastic energy of discretized system

U = 1 2

E

X

e=1

( Z

V e

E



u e0 − zw e00 + 1 2 w e02

 2

dV e

)

(11)

U = 2 Vx dV

U = 1 2 Z

V

E



u 0 − zw 00 + 1 2 w 02

 2 dV

Elastic energy of discretized system

U = 1 2

E

X

e=1

( Z

V e

E



u e0 − zw e00 + 1 2 w e02

 2 dV e

)

U= 1 2

E

X

e=1

( Z l e 0

Z

A e

E



u e02 +z 2 w e002 + 1

4 w e04 −2zu e0 w e00 +u e0 w e02 −zw e00 w e02

 dA e

 dx e

)

(12)

U = 2 Vx dV

U = 1 2 Z

V

E



u 0 − zw 00 + 1 2 w 02

 2 dV

Elastic energy of discretized system

U = 1 2

E

X

e=1

( Z

V e

E



u e0 − zw e00 + 1 2 w e02

 2 dV e

)

U= 1 2

E

X

e=1

( Z l e 0

Z

A e

E 

u e02 +z 2 w e002 + 1 4 w e04

nonlinear term, upon linearization ∼ = 0

−2zu e0 w e00 +u e0 w e02 −zw e00 w e02  dA e

 dx e

)

(13)

U = 2 Vx dV

U = 1 2 Z

V

E



u 0 − zw 00 + 1 2 w 02

 2 dV

Elastic energy of discretized system

U = 1 2

E

X

e=1

( Z

V e

E



u e0 − zw e00 + 1 2 w e02

 2 dV e

)

U= 1 2

E

X

e=1

( Z l e 0

Z

A e

E 

u e02 +z 2 w e002 −2zu e0 w e00 +u e0 w e02 −zw e00 w e02  dA e

 dx e

)

(14)

U = 2 Vx dV

U = 1 2 Z

V

E



u 0 − zw 00 + 1 2 w 02

 2 dV

Elastic energy of discretized system

U = 1 2

E

X

e=1

( Z

V e

E



u e0 − zw e00 + 1 2 w e02

 2

dV e )

U= 1 2

E

X

e=1

( Z l e 0



EA e u e02 +EI y e w e002 +EA e u e0 w e02  dx e

)

(15)

U = 2 Vx dV

U = 1 2 Z

V

E



u 0 − zw 00 + 1 2 w 02

 2 dV

Elastic energy of discretized system

U = 1 2

E

X

e=1

( Z

V e

E



u e0 − zw e00 + 1 2 w e02

 2

dV e )

U= 1 2

E

X

e=1

( Z l e 0



EA e u e02 +EI y e w e002 + EA e u e0 normal force N e (x)

w e02  dx e

)

(16)

U = 2 Vx dV

U = 1 2 Z

V

E



u 0 − zw 00 + 1 2 w 02

 2 dV

Elastic energy of discretized system

U = 1 2

E

X

e=1

( Z

V e

E



u e0 − zw e00 + 1 2 w e02

 2

dV e )

U= 1 2

E

X

e=1

( Z l e 0



EA e u e02 +EI y e w e002 + N e (x)w e02  dx e

)

(17)

A, I

x e

0 l e

q 2

q 1 e q e 3

q 5

q e 4 q e 6

x e

i j

(18)

A, I

x e

0 l e

q 2

q 1 e q e 3

q 5

q e 4 q e 6

x e

i j

Displacement u(x) e = N u q e , N u = [L e 1 0 0 L e 2 0 0]

0 l e

1

x e L e 1 (x e ) = 1 − x l e e

0 l e

1

x e

L e 2 (x e ) = x l e e

(19)

A, I

x e

0 l e

2

q 1 e q e 3

5

q e 4 q e 6

x e

i j

Deflection w(x) e = N w q e , N w = [0 H 1 e H 2 e 0 H 3 e H 4 e ]

0 l e

1

x e H 1 e (x e ) = 1 − 3 

x e l e

 2

+ 2 

x e l e

 3

0 l e

1

x e H 3 e (x e ) = 3 

x e l e

 2

− 2 

x e l e

 3

0 l e x e

H 2 e (x e ) = x e h 1 − 

x e l e

i 2

0 l e x e

H 4 e (x e ) = x e

 

x e l e

 2

− 

x e l e

 

(20)

Elastic energy for discretized structure

U = 1 2

E

X

e=1

( Z l e 0



EA e u e02 +EI y e w e002 + N e (x)w e02  dx e

)

u(x) e = N u q e = N u T I e Q, w(x) e = N w q e = N w T I e Q

(21)

U = 1 2

E

X

e=1

( Z l e 0



EA e u e02 +EI y e w e002 + N e (x)w e02  dx e

)

u(x) e = N u q e = N u T I e Q, w(x) e = N w q e = N w T I e Q

U= 1 2

E

X

e=1

( Z l e 0



EA e Q T T I eT N u 0 T N 0 u T I e Q+EI y e Q T T I eT N 00 w T N 00 w T I e Q

+ N e (x)Q T T I eT N w 0 T N 0 w T I e Q 

dx e o

(22)

U = 1 2

E

X

e=1

( Z l e 0



EA e u e02 +EI y e w e002 + N e (x)w e02  dx e

)

u(x) e = N u q e = N u T I e Q, w(x) e = N w q e = N w T I e Q

U= 1 2 Q T

E

X

e=1

( Z l e 0



EA e T I eT N 0 u T N 0 u T I e +EI y e T I eT N 00 w T N 00 w T I e

+ N e (x) I T eT N 0 w T N 0 w T I e  dx e o

Q

(23)

U = 1 2

E

X

e=1

Z l 0



EA e u e02 +EI y e w e002 + N e (x)w e02  dx e

u(x) e = N u q e = N u T I e Q, w(x) e = N w q e = N w T I e Q

U = 1 2 Q T

( E X

e=1

I T eT

Z l e 0



EA e N 0 u T N 0 u + EI y e N 00 w T N 00 w  dx e T I e

+

E

X

e=1

I T eT

Z l e 0

N e (x)N 0 w T N 0 w dx e T I e )

Q

(24)

U = 1 2

X

e=1 0

 EA e u e02 +EI y e w e002 + N e (x)w e02  dx e

u(x) e = N u q e = N u T I e Q, w(x) e = N w q e = N w T I e Q

U = 1 2 Q T

E

X

e=1

I T eT

Z l e 0



EA e N 0 u T N 0 u + EI y e N 00 w T N 00 w  dx e k e – linear stiffness matrix

I T e

+

E

X

e=1

I T eT

Z l e 0

N e (x)N 0 w T N 0 w dx e k e σ – initial stress matrix

I T e

Q

(25)

U = 1 2

E

X

e=1

( Z l e 0



EA e u e02 +EI y e w e002 + N e (x)w e02  dx e

)

u(x) e = N u q e = N u T I e Q, w(x) e = N w q e = N w T I e Q

U = 1 2 Q T

E

X

e=1

I

T eT k e T I e +

E

X

e=1

I T eT k e σ T I e

!

Q

(26)

U = 1 2

E

X

e=1

( Z l e 0



EA e u e02 +EI y e w e002 + N e (x)w e02  dx e

)

u(x) e = N u q e = N u T I e Q, w(x) e = N w q e = N w T I e Q

U = 1 2 Q T

E

X

e=1

I T eT k e T I e

K

+

E

X

e=1

I T eT k e σ T I e

K σ

 Q

(27)

U = 1 2

E

X

e=1

( Z l e 0



EA e u e02 +EI y e w e002 + N e (x)w e02  dx e

)

u(x) e = N u q e = N u T I e Q, w(x) e = N w q e = N w T I e Q

U = 1

2 Q T (K + K σ ) Q

(28)

FEM equations for stability

Total energy

Φ = 1

2 Q T (K + K σ ) Q − Q T P

Minimization of energy

δΦ = 0 =⇒ (K + K σ ) Q − P = 0

Equations for two adjacent equilibrium states – before and after buckling – eigenproblem

(K + K σ )Q 1 = P (K + K σ )Q 2 = P



− =⇒ (K + K σ )∆Q = 0

(29)

FEM equations for stability

Total energy

Φ = 1

2 Q T (K + K σ ) Q − Q T P Minimization of energy

δΦ = 0 =⇒ (K + K σ ) Q − P = 0

Equations for two adjacent equilibrium states – before and after buckling – eigenproblem

(K + K σ )Q 1 = P (K + K σ )Q 2 = P



− =⇒ (K + K σ )∆Q = 0

(30)

FEM equations for stability

Total energy

Φ = 1

2 Q T (K + K σ ) Q − Q T P Minimization of energy

δΦ = 0 =⇒ (K + K σ ) Q − P = 0

Equations for two adjacent equilibrium states – before and after buckling – eigenproblem

(K + K σ )Q 1 = P (K + K σ )Q 2 = P



− =⇒ (K + K σ )∆Q = 0

(31)

2 Minimization of energy

δΦ = 0 =⇒ (K + K σ ) Q − P = 0

Equations for two adjacent equilibrium states – before and after buckling – eigenproblem

(K + K σ )Q 1 = P (K + K σ )Q 2 = P



− =⇒ (K + K σ )∆Q = 0 equation is satisfied when

det (K + K σ ) = 0 or ∆Q = 0

(32)

2 Minimization of energy

δΦ = 0 =⇒ (K + K σ ) Q − P = 0

Equations for two adjacent equilibrium states – before and after buckling – eigenproblem

(K + K σ )Q 1 = P (K + K σ )Q 2 = P



− =⇒ (K + K σ )∆Q = 0 equation is satisfied when

det (K + K σ ) = 0

(33)

0

N e =  N e u N e w



, B e = LN e , L =

 d dx e

− d 2 dx e2

, D e =  EA e 0 0 EI e



k e =

 EA

l 0 0 − EA

l 0 0

0 12EI l 3

6EI

l 2 0 − 12EI l 3

6EI l 2

0 6EI

l 2 4EI

l 0 − 6EI

l 2 2EI

l

− EA

l 0 0 EA

l 0 0

0 − 12EI l 3 − 6EI

l 2 0 12EI l 3 − 6EI

l 2

0 6EI

l 2 2EI

l 0 − 6EI

l 2 4EI

l

e

(34)

k e σ = Z l e

0

N e (x)N 0 w T N 0 w dx e

k e σ = N e (x) 30l e

0 0 0 0 0 0

0 36 3l 0 −36 3l 0 3l 4l 2 0 −3l −l 2

0 0 0 0 0 0

0 −36 −3l 0 36 −3l 0 3l −l 2 0 −3l 4l 2

e

P = λP =⇒ k e σ = λk e σ

(35)

FEM algorithm

1 Statics – determination of normal forces KQ = P =⇒ N e =⇒ k e σ

2 Buckling – eigenproblem

(K + λK σ )∆Q = 0 =⇒ λ kr =⇒ ∆Q – buckling mode

(36)

λ · 1 E, A, I, l

Q 2

Q 1

Q 3

Q 5

Q 4

Q 6

X Z

i j

N (x) = −1

(37)

Przykład

Cantilever

λ · 1 E, A, I, l

Q 2

Q 1

Q 3

Q 5

Q 4

Q 6

X Z

i j

Buckling

(K + λK σ )∆Q = 0

 EI

l 3

Al 2

I 0 0 - Al I 2 0 0 0 12 6l 0 -12 6l 0 6l 4l 2 0 -6l 2l 2 - Al I 2 0 0 Al I 2 0 0

0 -12 -6l 0 12 -6l 0 6l 2l 2 0 -6l 4l 2

 +λ 1

30l

0 0 0 0 0 0 0 36 3l 0 -36 3l 0 3l 4l 2 0 -3l -l 2 0 0 0 0 0 0 0 -36 -3l 0 36 -3l 0 3l -l 2 0 -3l 4l 2

∆Q 4

∆Q 5

∆Q 6

=

 0 0 0 0 0 0

 EI

l 3

Al 2

I 0 0

0 12 -6l 0 -6l 4l 2

 +λ 1 30l

 0 0 0 0 36 -3l 0 -3l 4l 2

∆Q 4

∆Q 5

∆Q 6

=

 0 0 0

EI l 3

Al 2

I 0 0

0 12 -6l 0 -6l 4l 2

 +λ 1 30l

 0 0 0 0 36 -3l 0 -3l 4l 2

= 0

⇒ λ 1 = 2.486 EI l 2 λ 2 = 32.181 EI

l 2

(38)

Przykład

Cantilever

λ · 1 E, A, I, l

Q 2

Q 1

Q 3

Q 5

Q 4

Q 6

X Z

i j

Buckling

(K + λK σ )∆Q = 0

 EI

l 3

Al 2

I 0 0 - Al I 2 0 0 0 12 6l 0 -12 6l 0 6l 4l 2 0 -6l 2l 2 - Al I 2 0 0 Al I 2 0 0

0 -12 -6l 0 12 -6l 0 6l 2l 2 0 -6l 4l 2

 +λ 1

30l

0 0 0 0 0 0 0 36 3l 0 -36 3l 0 3l 4l 2 0 -3l -l 2 0 0 0 0 0 0 0 -36 -3l 0 36 -3l 0 3l -l 2 0 -3l 4l 2

∆Q 1

∆Q 2

∆Q 3

∆Q 4

∆Q 5

∆Q 6

=

 0 0 0 0 0 0

 EI

l 3

Al 2

I 0 0

0 12 -6l 0 -6l 4l 2

 +λ 1 30l

 0 0 0 0 36 -3l 0 -3l 4l 2

∆Q 4

∆Q 5

∆Q 6

=

 0 0 0

EI l 3

Al 2

I 0 0

0 12 -6l 0 -6l 4l 2

 +λ 1 30l

 0 0 0 0 36 -3l 0 -3l 4l 2

= 0

⇒ λ 1 = 2.486 EI l 2 λ 2 = 32.181 EI

l 2

(39)

Przykład

Cantilever

λ · 1 E, A, I, l

Q 2

Q 1

Q 3

Q 5

Q 4

Q 6

X Z

i j

Buckling

(K + λK σ )∆Q = 0

 EI

l 3

Al 2

I 0 0 - Al I 2 0 0 0 12 6l 0 -12 6l 0 6l 4l 2 0 -6l 2l 2 - Al I 2 0 0 Al I 2 0 0

0 -12 -6l 0 12 -6l 0 6l 2l 2 0 -6l 4l 2

 +λ 1

30l

0 0 0 0 0 0 0 36 3l 0 -36 3l 0 3l 4l 2 0 -3l -l 2 0 0 0 0 0 0 0 -36 -3l 0 36 -3l 0 3l -l 2 0 -3l 4l 2

 0 0 0

∆Q 4

∆Q 5

∆Q 6

=

 0 0 0 0 0 0

 EI

l 3

Al 2

I 0 0

0 12 -6l 0 -6l 4l 2

 +λ 1 30l

 0 0 0 0 36 -3l 0 -3l 4l 2

∆Q 4

∆Q 5

∆Q 6

=

 0 0 0

EI l 3

Al 2

I 0 0

0 12 -6l 0 -6l 4l 2

 +λ 1 30l

 0 0 0 0 36 -3l 0 -3l 4l 2

= 0

⇒ λ 1 = 2.486 EI l 2 λ 2 = 32.181 EI

l 2

(40)

Przykład

Cantilever

λ · 1 E, A, I, l

Q 2

Q 1

Q 3

Q 5

Q 4

Q 6

X Z

i j

Buckling

(K + λK σ )∆Q = 0

 EI

l 3

Al 2

I 0 0 - Al I 2 0 0 0 12 6l 0 -12 6l 0 6l 4l 2 0 -6l 2l 2 - Al I 2 0 0 Al I 2 0 0

0 -12 -6l 0 12 -6l 0 6l 2l 2 0 -6l 4l 2

 +λ 1

30l

0 0 0 0 0 0 0 36 3l 0 -36 3l 0 3l 4l 2 0 -3l -l 2 0 0 0 0 0 0 0 -36 -3l 0 36 -3l 0 3l -l 2 0 -3l 4l 2

 0 0 0

∆Q 4

∆Q 5

∆Q 6

=

 0 0 0 0 0 0

 EI

l 3

Al 2

I 0 0

0 12 -6l 0 -6l 4l 2

 +λ 1 30l

 0 0 0 0 36 -3l 0 -3l 4l 2

∆Q 4

∆Q 5

∆Q 6

=

 0 0 0

EI l 3

Al 2

I 0 0

0 12 -6l 0 -6l 4l 2

 +λ 1 30l

 0 0 0 0 36 -3l 0 -3l 4l 2

= 0

⇒ λ 1 = 2.486 EI l 2 λ 2 = 32.181 EI

l 2

(41)

Przykład

Cantilever

λ · 1 E, A, I, l

Q 2

Q 1

Q 3

Q 5

Q 4

Q 6

X Z

i j

Buckling

(K + λK σ )∆Q = 0

 EI

l 3

Al 2

I 0 0 - Al I 2 0 0 0 12 6l 0 -12 6l 0 6l 4l 2 0 -6l 2l 2 - Al I 2 0 0 Al I 2 0 0

0 -12 -6l 0 12 -6l 0 6l 2l 2 0 -6l 4l 2

 +λ 1

30l

0 0 0 0 0 0 0 36 3l 0 -36 3l 0 3l 4l 2 0 -3l -l 2 0 0 0 0 0 0 0 -36 -3l 0 36 -3l 0 3l -l 2 0 -3l 4l 2

 0 0 0

∆Q 4

∆Q 5

∆Q 6

=

 0 0 0 0 0 0

 EI

l 3

Al 2

I 0 0

0 12 -6l 0 -6l 4l 2

 +λ 1 30l

 0 0 0 0 36 -3l 0 -3l 4l 2

∆Q 4

∆Q 5

∆Q 6

=

 0 0 0

EI l 3

Al 2

I 0 0

0 12 -6l 0 -6l 4l 2

 +λ 1 30l

 0 0 0 0 36 -3l 0 -3l 4l 2

= 0

⇒ λ 1 = 2.486 EI l 2 λ 2 = 32.181 EI

l 2

(42)

Przykład

Cantilever

λ · 1 E, A, I, l

Q 2

Q 1

Q 3

Q 5

Q 4

Q 6

X Z

i j

Buckling

(K + λK σ )∆Q = 0

 EI

l 3

Al 2

I 0 0 - Al I 2 0 0 0 12 6l 0 -12 6l 0 6l 4l 2 0 -6l 2l 2 - Al I 2 0 0 Al I 2 0 0

0 -12 -6l 0 12 -6l 0 6l 2l 2 0 -6l 4l 2

 +λ 1

30l

0 0 0 0 0 0 0 36 3l 0 -36 3l 0 3l 4l 2 0 -3l -l 2 0 0 0 0 0 0 0 -36 -3l 0 36 -3l 0 3l -l 2 0 -3l 4l 2

 0 0 0

∆Q 4

∆Q 5

∆Q 6

=

 0 0 0 0 0 0

 EI

l 3

Al 2

I 0 0

0 12 -6l 0 -6l 4l 2

 +λ 1 30l

 0 0 0 0 36 -3l 0 -3l 4l 2

∆Q 4

∆Q 5

∆Q 6

=

 0 0 0

EI l 3

Al 2

I 0 0

0 12 -6l 0 -6l 4l 2

 +λ 1 30l

 0 0 0 0 36 -3l 0 -3l 4l 2

= 0 ⇒ λ 1 = 2.486 EI l 2 λ 2 = 32.181 EI

l 2

(43)

λ · 1 E, A, I, l

Q 2

Q 1

Q 3

Q 5

Q 4

Q 6

X Z

i j

 EI

l 3

Al 2

I 0 0 - Al I 2 0 0 0 12 6l 0 -12 6l 0 6l 4l 2 0 -6l 2l 2 - Al I 2 0 0 Al I 2 0 0

0 -12 -6l 0 12 -6l 0 6l 2l 2 0 -6l 4l 2

 +λ 1

30l

0 0 0 0 0 0 0 36 3l 0 -36 3l 0 3l 4l 2 0 -3l -l 2 0 0 0 0 0 0 0 -36 -3l 0 36 -3l 0 3l -l 2 0 -3l 4l 2

 0 0 0

∆Q 4

∆Q 5

∆Q 6

=

 0 0 0 0 0 0

 EI

l 3

Al 2

I 0 0

0 12 -6l 0 -6l 4l 2

 +λ 1 30l

 0 0 0 0 36 -3l 0 -3l 4l 2

∆Q 4

∆Q 5

∆Q 6

=

 0 0 0

EI l 3

Al 2

I 0 0

0 12 -6l 0 -6l 4l 2

 +λ 1 30l

 0 0 0 0 36 -3l 0 -3l 4l 2

= 0 ⇒ λ 1 = 2.486 EI

l 2 ⇒ P cr anal = 2.467 EI l 2 λ 2 = 32.181 EI

l 2

(44)

Buckling modes

Buckling modes are determined from one of two linearly independent equations upon substitution of respective eigenvalue

0 l e

∆Q 5 = 0.417l·∆Q 6

∆Q 6

x e for λ 1

0 l e x e

for λ 2

∆Q 5 = 0.182l·∆Q 6

∆Q 6

Cytaty

Powiązane dokumenty

Проте, на нашу думку, недостатньо вивченими є ознаки та специфічні прояви гібридних війн, їх вплив на політичні процеси в різних регіонах

Faculty of Civil Engineering, Cracow University of Technology URL: www.CCE.pk.edu.pl. Computational Methods, 2020

First two buckling modes for simply supported panel (ROBOT).. Option 1: web buckling. Local

For four-noded element load-displacement diagram exhibits artificial hardening due to so-called volumetric locking, since HMH flow theory contains kinematic constraint -

Membrane and bending forces (transverse shear neglected).. Finite elements for plates

Project ”The development of the didactic potential of Cracow University of Technology in the range of modern construction” is co-financed by the European Union.. Example for

I follower load (varying with deformation) Caused by nonlinear constitutive relations:. I plasticity

Project ”The development of the didactic potential of Cracow University of Technology in the range of modern construction” is co-financed by the European Union within the confines