• Nie Znaleziono Wyników

Geometria w grafice komputerowej Maciej Czarnecki

N/A
N/A
Protected

Academic year: 2021

Share "Geometria w grafice komputerowej Maciej Czarnecki"

Copied!
24
0
0

Pełen tekst

(1)

Geometria w grafice komputerowej

Maciej Czarnecki

(2)

Spis treści

0 Geometria euklidesowa 3

1 Geometria analityczna na płaszczyźnie 5

2 Geometria analityczna w przestrzeni 6

3 Krzywe i powierzchnie stopnia 2 7

4 Rachunek macierzowy 9

5 Liczby zespolone i kwaterniony 10

6 Przekształcenia geometryczne 12

7 Krzywe parametryczne 14

8 Powierzchnie regularne 18

(3)

0 Geometria euklidesowa

Definicja 0.1. Rn, +, ·

Stwierdzenie 0.2. Rn jest przestrzenią liniową Definicja 0.3. kombinacja liniowa

Definicja 0.4. podprzestrzeń liniowa

Przykład 0.5. podprzestrzeń liniowa = zbiór rozwiązań jednorodnego układu równań liniowych

Definicja 0.6. liniowa niezależność, równoległość wektorów Definicja 0.7. baza, wymiar

Przykład 0.8. baza kanoniczna

Definicja 0.9. współrzędne wektora w bazie Definicja 0.10. przekształcenie liniowe

Definicja 0.11. En, −→pq

Stwierdzenie 0.12. En jest przestrzenią afiniczną Definicja 0.13. dodawanie punktu i wektora

Definicja 0.14. środek ciężkości; dla odcinka, trójkąta Definicja 0.15. położenie ogólne

Definicja 0.16. podprzestrzeń afiniczna Stwierdzenie 0.17. przedstawienie liniowe Definicja 0.18. wymiar, prosta, płaszczyzna

Definicja 0.19. równoległość podprzestrzenie afinicznych

Przykład 0.20. podprzestrzeń afiniczna = zbiór rozwiązań układu równań li- niowych

Definicja 0.21. układ współrzędnych, współrzędne punktu

Definicja 0.22. otoczka wypukła, odcinek, trójkąt, czworościan, sympleks Definicja 0.23. równoległościan

Definicja 0.24. przekształcenie afiniczne Definicja 0.25. translacja

Stwierdzenie 0.26. Przekształcenie afiniczne jest złożeniem przekształcenia liniowego z translacją

(4)

Definicja 0.27. (standardowy) iloczyn skalarny Stwierdzenie 0.28. własności iloczynu skalarnego Uwaga 0.29. inne iloczyny skalarne

Definicja 0.30. norma, wektor jednostkowy Stwierdzenie 0.31. własności normy Twierdzenie 0.32. nierówność Schwarza

Definicja 0.33. kąt pomiędzy wektorami, prostopadłość Twierdzenie 0.34. cosinusów, Pitagorasa

Definicja 0.35. prostopadłość podprzestrzeni Twierdzenie 0.36. istnienie bazy ortonormalnej

Stwierdzenie 0.37. współrzędne wektora w bazie ortonormalnej Definicja 0.38. przekształcenie ortogonalne

Definicja 0.39. odległość punktów Definicja 0.40. odległość podzbiorów Definicja 0.41. kula, sfera, koło, okrąg

Definicja 0.42. objętość sympleksu, pole trójkąta, objętość czworościanu Stwierdzenie 0.43. objętość równoległościanu, pole równoległoboku Definicja 0.44. izometria

Twierdzenie 0.45. Mazura–Ulama

(5)

1 Geometria analityczna na płaszczyźnie

Definicja 1.1. iloczyn skalarny, norma i odległość w R2 Definicja 1.2. równanie parametryczne prostej

Definicja 1.3. równanie ogólne prostej Definicja 1.4. równanie kierunkowe prostej Definicja 1.5. równanie odcinkowe prostej

Stwierdzenie 1.6. warunek równoległości prostych Stwierdzenie 1.7. warunek prostopadłości prostych

Definicja 1.8. kąt pomiędzy prostymi (normalne, kierunkowe) Definicja 1.9. wektor normalny do prostej

Stwierdzenie 1.10. wzór na kąt pomiędzy prostymi Stwierdzenie 1.11. odległość punktu od prostej

Stwierdzenie 1.12. odległość dwóch prostych równoległych Stwierdzenie 1.13. środek odcinka, środek ciężkości trójkąta Stwierdzenie 1.14. pole trójkąta, równoległoboku

(6)

2 Geometria analityczna w przestrzeni

Definicja 2.1. iloczyn skalarny, norma, odległość w R3 Definicja 2.2. iloczyn wektorowy

Stwierdzenie 2.3. własności liniowe iloczynu wektorowego Stwierdzenie 2.4. własności geometryczne iloczynu wektorowego Definicja 2.5. równanie parametryczne płaszczyzny

Definicja 2.6. równanie ogólne płaszczyzny

Stwierdzenie 2.7. wektor normalny do płaszczyzny (n = v × w) Definicja 2.8. kąt pomiędzy płaszczyznami

Stwierdzenie 2.9. warunek równoległości, prostopadłości płaszczyzn Stwierdzenie 2.10. odległość punktu od płaszczyzny

Stwierdzenie 2.11. odległość płaszczyzn równoległych Stwierdzenie 2.12. objętość czworościanu, pole trójkąta

Stwierdzenie 2.13. objętość równoległościanu, pole równoległoboku Definicja 2.14. równanie ogólne prostej w E3

Definicja 2.15. kąt pomiędzy prostą i płaszczyną Stwierdzenie 2.16. odległość prostych skośnych

(7)

3 Krzywe i powierzchnie stopnia 2

Definicja 3.1. elipsa w położeniu standardowym xa22 +yb22 = 1, a ­ b > 0 elipsa — izometryczny obraz elipsy w położeniu standardowym Definicja 3.2. c =

a2− b2; ogniska F1,2= (∓c, 0), kierownice k1,2: x = ∓ac2 mimośród e =ac, oś wielka 2a, oś mała 2b

Stwierdzenie 3.3. |XF1| + |XF2| = 2a Stwierdzenie 3.4. e = d(X,k|XF2|

2) dla X bliższego F2

Definicja 3.5. hiperbola w położeniu standardowym xa22 yb22 = 1, a, b > 0 hiperbola — izometryczny obraz hiperboli w położeniu standardowym Definicja 3.6. c =

a2+ b2; ogniska F1,2= (∓c, 0), kierownice k1,2: x = ∓ac2 mimośród e =ac, oś rzeczywista 2a, oś urojona 2b;

asymptoty m1,2: y = ∓abx

Stwierdzenie 3.7. | |XF1| − |XF2| | = 2a Stwierdzenie 3.8. e = d(X,k|XF2|

2) dla X bliższego F2

Definicja 3.9. parabola w położeniu standardowym y2= 2px, p > 0 parabola — izometryczny obraz paraboli w położeniu standardowym Definicja 3.10. ognisko F = p2, 0, kierownica k : x = −p2, imośród e = 1 Stwierdzenie 3.11. |XF | = d(X, k)

Definicja 3.12. krzywa stożkowa — elipsa, hiperbola lub parabola

styczna do stożkowej — prosta mająca dokładnie jeden punkt wspólna i do- datkowo dla paraboli nierównoległa do osi symetrii

Stwierdzenie 3.13. l : Ax + By + C = 0 jest styczna do elipsy ⇐⇒ a2A2+ b2B2= C2

hiperboli ⇐⇒ a2A2− b2B2= C2

l : y = mx + n jest styczna do paraboli ⇐⇒ p = 2mn Stwierdzenie 3.14. Styczna w (x0, y0) do

elipsy xa02x+yb02y = 1 hiperboli xa02xyb02y = 1 paraboli yy0= p(x + x0)

Definicja 3.15. ogólne równanie stopnia 2 w E2

ax2+ bxy + cy2+ dx + ey + f = 0, a 6= 0 lub c 6= 0 lub b 6= 0 Stwierdzenie 3.16. można przyjąć b = 0

(8)

Twierdzenie 3.17. klasyfikacja afiniczna krzywych stopnia 2 w E2: ξx2+ ηy2= 0, ξ, η ∈ {−1, 0, 1}, ξ2+ η2> 0

ξx2+ ηy2= 1, ξ, η ∈ {−1, 0, 1}, ξ2+ η2> 0 x2+ y = 0

Definicja 3.18. zbiór pusty, punkt, prosta; dwie proste równoległe, dwie proste przecinające się elipsa, hiperbola, parabola

Definicja 3.19. ogólne równanie stopnia 2 w E3

ax2+ by2+ cz2+ dxy + exz + f yz + gx + hy + iz + j = 0 jedna z: a, b, c, d, e, f różna od 0

Stwierdzenie 3.20. można przyjąć d = e = f = 0

Twierdzenie 3.21. klasyfikacja afiniczna powierzchni stopnia 2 w E3: ξx2+ ηy2+ ζz2= 0, ξ, η, ζ ∈ {−1, 0, 1}, ξ2+ η2+ ζ2> 0 ξx2+ ηy2+ ζz2= 1, ξ, η, ζ ∈ {−1, 0, 1}, ξ2+ η2+ ζ2> 0 ξx2+ ηy2+ z = 0, ξ, η ∈ {−1, 0, 1}, ξ2+ η2> 0

Definicja 3.22. zbiór pusty, punkt, prosta, płaszczyzna;

dwie płaszczyzny równoległe, dwie płaszczyzny przecinające się walce: eliptyczny, hiperboliczny, paraboliczny

elipsoida stożek

hiperboloidy: jedno–, dwupowłokowa paraboloidy: paraboliczna, hiperboliczna

Stwierdzenie 3.23. Płaszczyzna styczna do powierzchni ax2+ by2+ cz2+ dx + ey + f z + g = 0 w punkcie (x0, y0, z0) ma równanie

(2ax0+ d)x + (2by0+ e)y + (2cz0+ f )z − ax20− by20− cz20− g = 0

(9)

4 Rachunek macierzowy

Definicja 4.1. macierz, Mmn – zbiór macierzy m × n Definicja 4.2. dodawanie macierzy

Definicja 4.3. mnożenie macierzy przez skalar

Definicja 4.4. mnożenie macierzowe, wykonalność (w tym dla kwadratowych) Definicja 4.5. macierz jednostkowa, diagonalna, górna/dolna trójkątna Stwierdzenie 4.6. własności działań na macierzach: łączność, element neu- tralny lewo/prawostronny, rozdzielność, mieszana łączność

Przykład 4.7. nieprzemienność mnożenia macierzowego Definicja 4.8. transpozycja

Definicja 4.9. wyznacznik przez rozwinięcie Laplace’a względem 1–szego wier- sza, przykład dla n = 2.

Przykład 4.10. n = 3 schemat Sarusa Stwierdzenie 4.11. det AT = det A

Stwierdzenie 4.12. rozwinięcie Laplace’a względem dowolnego wiersza i ko- lumny

Stwierdzenie 4.13. zachowanie wyznacznika przy operacjach elementarnych na wierszach/kolumnach

Twierdzenie 4.14. Cauchy’ego: det(AB) = det A det B Definicja 4.15. macierz odwrotna

Stwierdzenie 4.16. wzór na macierz odwrotną Stwierdzenie 4.17. GL(n) jest grupą

Definicja 4.18. macierz ortogonalna, O(n), SO(n) Stwierdzenie 4.19. O(n), SO(n) są grupami

Definicja 4.20. macierz przekształcenia liniowego Rn→ Rn w bazie

Przykład 4.21. macierz przekształcenia liniowego R2→ R2, R3→ R3 w bazie kanonicznej

Stwierdzenie 4.22. macierz złożenia

Definicja 4.23. współrzędne jednorodne w Rn, przestrzeń rzutowa RPn Definicja 4.24. macierz przekształcenia afinicznego we współrzędnych jedno- rodnych (baza kanoniczna)

Przykład 4.25. macierz translacji, przekształcenia liniowego we współrzędnych jednorodnych

(10)

5 Liczby zespolone i kwaterniony

Definicja 5.1. dodawanie w R2

(x, y) · (x0, y0) = (x + x0, y + y0) Definicja 5.2. mnożenie w R2

(x, y) · (x0, y0) = (xx0− yy0, xy0+ yx0) Definicja 5.3. jednostka urojona i = (0, 1); i2= −1

Uwaga 5.4. (x, 0) ∼ x ∈ R; z = x + yi = (x, 0) + (y, 0) · (0, 1) Definicja 5.5. liczby zespolone: C = R2 z + oraz ·

Re, Im, postać kanoniczna Twierdzenie 5.6. (C, +, ·) — ciało

0 = (0, 0), 1 = (1, 0), −z = (−x, −y), z−1=

x

x2+y2,x2−y+y2

 Definicja 5.7. sprzężenie z = x − yi

Stwierdzenie 5.8. własności sprzężenia:

z1± z2= z1± z2, z1· z2= z1· z2,

z1

z2



=zz1

2

Definicja 5.9. moduł |z| =p x2+ y2 Stwierdzenie 5.10. własności modułu:

|z1· z2| = |z1| |z2|,

z1 z2

=|z|z1|

2|, |z1+ z2| ¬ |z1| + |z2|, z · z = |z|2 Definicja 5.11. argument:

dla z = x + yi 6= 0: ϕ = argz, gdy cos ϕ = |z|x oraz sin ϕ = |z|y Argument główny Argz ∈ (−π, π]

Definicja 5.12. postać trygonometryczna 0 6= z = |z|(cos ϕ + i sin ϕ)

Stwierdzenie 5.13. Jeżeli z1 = |z1|(cos ϕ1 + i sin ϕ1), z2 = |z2|(cos ϕ2 + i sin ϕ2), to:

z1· z2= |z1| |z2| (cos(ϕ1+ ϕ2) + i sin(ϕ1+ ϕ2))

z1 z2 =|z|z1|

2|(cos(ϕ1− ϕ2) + i sin(ϕ1− ϕ2))

Twierdzenie 5.14. wzór Moivre’a: jeżeli z = |z|(cos ϕ + i sin ϕ), to zn= |z|n(cos nϕ + i sin nϕ)

Definicja 5.15. pierwiastek stopnia n z liczby z ∈ C: każda taka liczba w ∈ C, że wn= z.

Stwierdzenie 5.16. Jeżeli z = |z|(cos ϕ + i sin ϕ), to z posiada dokładnie n pierwiastków stopnia n–tego, a dane są one wzorami:

wk = p|z|n



cosϕ + 2kπ

n + i sinϕ + 2kπ n



, k = 0, . . . , n − 1

(11)

Przykład 5.17. pierwiastki stopnia n–tego z liczby z — wierzchołki n–kąta foremnego o środku 0 wpisanego w okrąg o promieniu p|z|n

Przykład 5.18. |z − z0| = r okrąg o środku z0 i promieniu r; |z − z0| ¬ r koło ϕ1 ¬ argz ¬ ϕ2 kąt płaski o wierzchołku 0 i ramionach nachylonych do dodatniej półosi rzeczywistej pod kątami ϕ1 oraz ϕ2

|z − z1| = |z − z2| symetralna odcinka o końcach z1 z2

Przykład 5.19. e= cos ϕ + i sin ϕ; e = −1 Definicja 5.20. dodawanie w R4

(a, b, c, d) + (a0, b0, c0, d0) = (a + a0, b + b0, c + c0, d + d0)

Definicja 5.21. 1 = (1, 0, 0, 0), i = (0, 1, 0, 0), j = (0, 0, 1, 0), k = (0, 0, 0, 1)

· 1 i j k

1 1 i j k

i i −1 k −j

j j −k −1 i

k k j −i −1

Dla q = a + bi + cj + dk, q0= a0+ b0i + c0j + d0k

q · q0 = aa0− bb0− cc0− dd0+ (ab0+ ba0+ cd0− dc0)i + (ac0+ ca0− bd0+ db0)j + (ad0+ da0+ bc0− cb0)k Definicja 5.22. kwaterniony: H = R4 z + oraz ·

Twierdzenie 5.23. (H, +, ·) — ciało (nieprzemienne) 0 = (0, 0, 0, 0), 1 = (1, 0, 0, 0), −q = (−a, −b, −c, −d), q−1=

a

a2+b2+c2+d2,a2+b2−b+c2+d2,a2+b2−c+c2+d2,a2+b2−d+c2+d2

 Definicja 5.24. Dla kwaternionu q = a + bi + cj + dk:

moduł kqk =√

a2+ b2+ c2+ d2 sprzężenie q = a − bi − cj − dk wtedy q−1= kqkq2

Stwierdzenie 5.25. Dla kwaternionów w postaci wektorowej q = (s, v), q = (s0, v0), gdzie s, s0∈ R, v, v0∈ R3

q · q0= (ss0− hv, v0i, sv0+ s0v + v × v0)

(12)

6 Przekształcenia geometryczne

Definicja 6.1. rzut ortogonalny na podprzestrzeń liniową Definicja 6.2. rzut ortogonalny na podprzestrzeń afiniczną Definicja 6.3. symetria względem podprzestrzeni afinicznej

Stwierdzenie 6.4. własności symetrii: inwolucja, izometria, zbiór punktów sta- łych

Stwierdzenie 6.5. klasyfikacja O(2) i SO(2) Przekształcenia geometryczne płaszczyzny 6.6. idR2 — przedstawienie macierzowe

6.7. symetrie względem osi — przedstawienie macierzowe

6.8. symetria środkowa względem 0 — przedstawienie macierzowe 6.9. obrót dookoła 0 — przedstawienie macierzowe

6.10. rzuty na osie — przedstawienie macierzowe

6.11. powinowactwa względem osi — przedstawienie macierzowe

6.12. translacja — przedstawienie macierzowe we współrzędnych jednorodnych 6.13. symetria środkowa względem dowolnego punktu — przedstawienie macie- rzowe we współrzędnych jednorodnych

6.14. obrót wokół dowolnego punktu — przedstawienie macierzowe we współ- rzędnych jednorodnych

6.15. rzut prostopadły na dowolną prostą — przedstawienie macierzowe we współrzędnych jednorodnych wyprowadzenie

6.16. symetria względem dowolnej prostej — przedstawienie macierzowe we współrzędnych jednorodnych wyprowadzenie

Definicja 6.17. rzut równoległy

Definicja 6.18. rzut środkowy na prostą

6.19. rzut równoległy — przedstawienie macierzowe we współrzędnych jedno- rodnych

6.20. rzut środkowy — przedstawienie macierzowe we współrzędnych jednorod- nych

Przekształcenia geometryczne przestrzeni trójwymiarowej 6.21. idR3 — przedstawienie macierzowe

6.22. symetrie względem płaszczyzn i osi współrzędnych — przedstawienie ma- cierzowe

6.23. symetria środkowa względem 0 — przedstawienie macierzowe

(13)

6.24. rzuty na płaszczyzny i osie współrzędnych — przedstawienie macierzowe 6.25. obrót dookoła osi — przedstawienie macierzowe

6.26. translacja — przedstawienie macierzowe we współrzędnych jednorodnych 6.27. obrót dookoła osi wyznaczonej przez wektor jednostkowy v o kąt α

przedstawienie kwaternionowe

p 7→ q · p · q−1, gdzie q = cosα

2, sinα 2 v

(14)

7 Krzywe parametryczne

Definicja 7.1. Krzywa parametryczna: ciągła funkcja α z przedziału I w płasz- czyznę R2(krzywa płaska) lub przestrzeń R3.

Ślad krzywej parametrycznej: obraz funkcji α, czyli zbiór α(I).

Definicja 7.2. Krzywa α : I → R3 jest różniczkowalna, jeżeli jej wszystkie składowe mają pochodne dowolnego rzędu, tzn. gdy

α(t) = (x(t), y(t), z(t)) dla t ∈ I, to funkcje x, y, z : I → R są klasy C.

Definicja 7.3. Wektor styczny do krzywej α w punkcie α(t):

α0(t) = (x0(t), y0(t), z0(t))

Przykład 7.4. linia śrubowa α(t) = (a cos t, a sin t, bt), t ∈ R.

Przykład 7.5. Wykres wartości bezwględnej nie jest krzywą różniczkowalną przy oczywistej parametryzacji α(t) = (t, |t|), ale jego parametryzacja

β(t) =





−e1t, e1t

dla t < 0 (0, 0) dla t = 0

e1t, e1t

dla t > 0 w pewnym otoczeniu 0 jest różniczkowalna.

Przykład 7.6. Parametryzacje okręgu o środku (0, 0) i promieniu r > 0 na płaszczyźnie:

α(t) = (r cos t, r sin t) β(t) = (r cos 2t, r sin 2t) γ(t) =

 r cost

r, r sint r



Przykład 7.7.

elipsa x2 a2 +y2

b2 = 1 α(t) = (a cos t, b sin t) hiperbola x2

a2 −y2

b2 = 1 α(t) = (a cosh t, b sinh t) parabola y2= 2px α(t) = t2

2p, t



Definicja 7.8. Prosta styczna do krzywej α w jej punkcie regularnym (czyli takim, że α0(t) 6= θ):

α(t) + lin (α0(t))

Definicja 7.9. Krzywa regularna: α0(t) = θ dla t ∈ I, czyli wszystkie punkty są regularne

(15)

Definicja 7.10. Długość łuku krzywej α : [a, b] → R3: s(t) =

Z t a

0(t)kdt

Krzywa α jest sparametryzowana długością łuku, gdy kα0(t)k = 1 dla dowol- nego t.

Stwierdzenie 7.11. Każdą krzywą regularną można sparametryzować długo- ścią łuku.

Dokładniej, jeżeli α : [a, b] → R3jest krzywą regularną, a funkcja s : [a, b] → [0, l] jej długością łuku, to krzywa α ◦ s−1 : [0, l] → R3 jest sparametryzowana długością łuku.

! Załóżmy odtąd, że krzywa α(s) = (x(s), y(s), z(s)) jest sparametryzowana długością łuku (w szczególności jest ona także regularna).

Wektor styczny oznaczamy tradycyjnie przez t(s) = α0(s).

Definicja 7.12. Krzywizna krzywej w punkcie α(s):

k(s) = kα00(s)k

Wektor normalny do krzywej w punkcie, w którym k(s) 6= 0:

n(s) = α00(s) k(s)

Definicja 7.13. Wektor binormalny do krzywej w punkcie α(s):

b(s) = t(s) × n(s)

Skręcenie krzywej w punkcie α(s): taka liczba τ (s), że b0(s) = τ (s) n(s)

Przykład 7.14. t, n, b, k, τ dla okręgu Przykład 7.15. t, n, b, k, τ dla linii śrubowej

Stwierdzenie 7.16. Dla krzywej α o krzywiźnie różnej od zera wektory t, n, b są jednostkowe i wzajemnie prostopadłe oraz

t × n = b, b × t = n, n × b = t, t0 k n, b0k n.

Dowód: Wektor normalny n jest jednostkowy, bo obliczamy go dzieląc wektor α00przez jego normę. Wektor styczny t jest wektorem jednostkowym, bo krzywa jest sparametryzowaną długością łuku. Stąd

0 = 10 = (ht, ti)0 = 2ht, t0i = 2kht, ni,

co oznacza, że t ⊥ n. Wektor binormalny b = t × n jest prostopadły do t i n z definicji iloczynu wektorowego, a jednostkowy, bo kbk = ktk knk sin^(t, n) = 1 · 1 · 1.

Korzystamy ze wzoru (u × v) × w = hw, uiv − hw, viu:

b × t = (t × n) × t = ht, tin − ht, nit = 1 · n − 0 · t = n

(16)

n × b = −(t × n) × n = −hn, tin + hn, nit = 0 · n + 1 · t = t

Na koniec t0= kn k n, wektor b jako jednostkowy jest prostopadły do b0 oraz hb0, ti = h(t × n)0, ti = ht0× n + t × n0, ti = khn × n, ti + ht × n0, ti = 0, czyli b0 jest także prostopadły do t, a tym samy jest równoległy do n.  Definicja 7.17. Płaszczyzna ściśle styczna w punkcie α(s):

α(s) + lin (t(s), n(s)) Płaszczyzna normalna w punkcie α(s):

α(s) + lin (n(s), b(s)) Płaszczyzna prostująca w punkcie α(s):

α(s) + lin (t(s), b(s))

Twierdzenie 7.18. (trójścian Freneta) Dla krzywej α o krzywiźnie różnej od zera spełnione są warunki:

t0 = kn n0 = −kt − τ b

b0 = τ n

Dowód: Równość pierwsza i trzecia wynikają z definicji k i τ . Aby udowodnić drugą wystarczy zróżniczkować

n0= (b × t)0 = b0× t + b × t0 = τ n × t + b × kn

= −τ t × n − kn × b = −τ b − kt.

 Twierdzenie 7.19. (podstawowe twierdzenie teorii krzywych) Dla dowolnego przedziału I ⊂ R i dowolnych funkcji k : I → R+, τ : I → R istnieje krzywa α : I → R3, dla której k jest krzywizną, a τ skręceniem.

Krzywa ta jest wyznaczona jednoznacznie z dokładnością do izometrii prze- strzeni R3 zachowującej orientację.

Stwierdzenie 7.20. Jeżeli krzywa α jest sparametryzowana długością łuku, to

τ = −hα0× α00, α000i k2 Dowód: Z definicji α0 = t, α00= kn. Stąd

α000= (kn)0= k0n + kn0= k0n + k(−kt − τ b) = −k2t + k0n − kτ b.

Ponieważ α0× α00= kb, więc

0× α00, α000i = hkb, −k2t + k0n − kτ bi = −k3hb, ti + kk0hb, ni − k2τ hb, bi = −k2τ.



(17)

Twierdzenie 7.21. Załóżmy, że krzywa α ma dowolną parametryzację (nieko- niecznie łukową). Wtedy

k = 0× α00k 0k3

τ = −hα0× α00, α000i 0× α00k2

Dowód: Niech α(u) będzie dowolną parametryzacją, a s(u) funkcją długości łuku. Wówczas krzywa β(s) = α ◦ u−1(s) jest sparametryzowana długością łuku.

Istotnie, ze wzoru na pochodną złożenia odwzorowań i pochodną funkcji odwrot- nej otrzymujemy:

s0(u) = kα0(u)k, u−10

(s) = 1

0(u−1(s)) k β0(s) = α0 u−1(s)

u−10

(s), 0(s)k = kα0 u−1(s) k 1

0(u−1(s)) k = 1 Będziemy pisać krótko β0= α00k pamiętając o złożeniach z funkcją u−1.

β00= α0 phα0, α0i

!0

=

α0010kphα0, α0i − α0 1

2

00i2hα0010k, α0i 0, α0i

= 0, α000− hα0, α000

0k4 = 0× α00) × α0 0k4

Ponieważ α0⊥ α0× α00, więc k(α0× α00) × α0k = kα0× α00k kα0k i ostatecznie k = kβ00k = 0× α00k

0k3

Wzór na skręcenie otrzymujemy obliczając β000 i stosując 7.20.  Wniosek 7.22. Krzywa płaska α(t) = (x(t), y(t)) (w dowolnej parametryzacji) ma krzywiznę (braną ze znakiem)

k = x0y00− x00y0 ((x0)2+ (y0)2)32 i oczywiście zerowe skręcenie.

Dowód: Traktujemy krzywą płaską jako krzywą w przestrzeni trójwymiarowej pisząc α(t) = (x(t), y(t), 0). Wówczas

α0= (x0, y0, 0), α00= (x00, y00, 0), α0× α00= (0, 0, x0y00− x00y0), skąd na mocy 7.21

k = |x0y00− x00y0|

p(x0)2+ (y0)23.

Znak krzywiźnie krzywej płaskiej nadajemy w zależności od kierunku przebiegu.



(18)

8 Powierzchnie regularne

Definicja 8.1. Powierzchnia regularna: podzbiór S ⊂ R3 taki, że dla każdego punktu p ∈ S istnieją takie zbiory otwarte V ⊂ R3zawierający p i U ⊂ R2oraz odwzorowanie X : U → V ∩ S spełniająca warunki:

1. X jest odwzorowaniem klasy C, 2. X jest różnowartościowe,

3. dla dowolnego punktu q ∈ U różniczka dXq jest różnowartościowa.

Mówimy wtedy, że X jest parametryzacją powierzchni S w otoczeniu punktu p.

Przykład 8.2. 1. Płaszczyzna z = 0 ma prametryzację (x, y) 7→ (x, y, 0).

2. Wykres funkcji różniczkowalnej:

graph h = {(x, y, h(x, y)) ; (x, y) ∈ U }

gdzie U jest otwartym podzbiorem R2i h : U → R funkcją rózniczkowalną.

Parametryzacją jest odwzorowanie h (w dowolnym punkcie).

3. Sfera jednostkowa:

S2= {(x, y, z) ∈ R3 ; x2+ y2+ z2= 1}

Sfery nie da się opisać jedną parametryzacją. Całą sferę można pokryć obrazami:

(a) sześciu rzutów postaci (x, y) 7→ (x, y,p

1 − x2− y2) (b) dwóch rzutów stereograficznych postaci

(x, y) 7→

 2x

1 + x2+ y2, 2y

1 + x2+ y2,−1 + x2+ y2 1 + x2+ y2



(c) czterech odwzorowań współrzędnych geograficznych postaci (u, v) 7→ (cos u cos v, sin u cos v, sin v)

4. Powierzchnia obrotowa: wynik obrotu obrazu krzywej płaskiej dokoła osi rozłącznej z tą krzywą i leżącej w płaszczyźnie krzywej. Jeżeli osią obrotu jest oś Oz, a obraz krzywej α leży po jej dodatniej stronie w płaszczyźnie xOz, to

α(v) = (ϕ(v), 0, ψ(v)),

przy czym v ∈ I, ϕ(v) > 0 dla v ∈ I, a parametryzacją tak otrzymanej powierzchni obrotowej jest

X : (0, 2π) × I 3 (u, v) 7→ (cos u ϕ(v), sin u ϕ(v), ψ(v)) (do opisu całej powierzchni potrzebne są dwie takie parametryzacje).

(19)

5. Torus (obrotowy) T jest wynikiem obrotu okręgu o promieniu r wokół osi zawartej w jego płaszczyźnie i odległej o jego środka o R > r. Torus T można sparametryzować odwzorowaniami postaci

(0, 2π) × (0, 2π) 3 (u, v) 7→ (cos u (R + r cos v), sin u (R + r cos v), r sin v).

Torus jest więc iloczynem kartezjańskim dwóch okręgów.

Stwierdzenie 8.3. Jeżeli U jest zbiorem otwartym w R3, f : U → R funkcją różniczkowalną klasy C, zaś a ∈ f (U ) wartością regularną funkcji f , czyli dfx6= 0 dla x ∈ f−1(a), to zbiór f−1(a) ⊂ R3 jest powierzchnią regularną.

Definicja 8.4. Niech X : U → S będzie parametryzacją powierzchni regularnej S w punkcie p, zaś q = (u0, v0) = X−1(p). Krzywe

α1: u 7→ X(u, v0) oraz α2: v 7→ X(u0, v)

nazywamy krzywymi parametryzacji X. Ich wektory styczne to odpowiednio:

Xu(u, v0) = α01(u) =∂X

∂u(u, v0) = dX(u,v0)(e1) Xv(u0, v) = α02(v) = ∂X

∂v(u0, v) = dX(u0,v)(e2)

Definicja 8.5. Przestrzenią styczną do powierzchni S w punkcie p ∈ S nazy- wamy podprzestrzeń liniową Tp(S) złożoną ze wszystkich wektorów stycznych w punkcie p do krzywych różniczkowalnych położonych na powierzchni S:

Tp(S) = lin Xu(X−1(p)), Xv(X−1(p)) = dXX−1(p) R2 .

Każdy element przestrzeni Tp(S) nazywamy wektorem stycznym do powierzchni S w punkcie p.

Definicja 8.6. Niech X bedzie parametryzacją powierzchni S w punkcie p.

Wektor

N (p) = Xu× Xv

kXu× Xvk(X−1(p))

nazywamy wektorem normalnym do powierzchni S w punkcie p. Oczywiście kN (p)k = 1 i N (p) ⊥ Tp(S).

Przykład 8.7. Opis wektorów parametryzacji i wektora normalnego 1. Płaszczyzny X(u, v) = (u, v, 0)

Xu= (1, 0, 0), Xv = (0, 1, 0), N = (0, 0, 1) 2. Wykres funkcji X(u, v) = (u, v, h(u, v))

Xu= (1, 0, h0u), Xv= (0, 1, hv0), N = (−h0u, −h0v, 1) p(h0u)2+ (h0v)2+ 1 3. Parametryzacja geograficzna sfery X(u, v) = (cos u cos v, sin u cos v, sin v)

Xu= (− sin u cos v, cos u cos v, 0), Xv= (− cos u sin v, − sin u sin v, cos v),

N = (cos u cos v, sin u cos v, sin v).

(20)

4. Parametryzacja powierzchni obrotowej X(u, v) = (cos u ϕ(v), sin u ϕ(v), ψ(v)) Xu= (− sin u ϕ(v), cos u ϕ(v), 0),

Xv= (cos u ϕ0(v), sin u ϕ0(v), ψ0(v)), N = (cos u ψ0(v), sin u ψ0(v), −ϕ0(v))

p(ϕ0(v))2+ (ψ0(v))2 .

Szczególnie prostą postać N otrzymujemy, gdy obracana krzywa jest spa- rametryzowana długością łuku, tzn. gdy (ϕ0(v))2+ (ψ0(v))2= 1.

5. Parametryzacja torusa X(u, v) = (cos u (R+r cos v), sin u (R+r cos v), r sin v):

wystarczy zastosować wzory dla powierzchni obrotowej biorąc ϕ(v) = R + r cos v, ψ(v) = r sin v.

Wtedy

ϕ0(v) = −r sin v, ψ0(v) = r cos v, skąd

Xu= (− sin u (R + r cos v), cos u (R + r cos v), 0), Xv= (−r cos u sin v, −r sin u sin v, r cos v),

N = (cos u cos v, sin u cos v, sin v).

Stwierdzenie 8.8. Jeżeli X : U → S oraz Y : W → S są parametryzacjami powierzchni regularnej S w punkcie p, to odwzorowanie

Y−1◦ X : X−1(X(U ) ∩ Y(W )) → Y−1(X(U ) ∩ Y(W )) jest odwzorowanie klasy C pomiędzy zbiorami otwartymi w R2.

Definicja 8.9. Funkcja rzeczywista f określona na powierzchni regularnej S jest różniczkowalna, gdy jej złożenie z dowolną parametryzacją powierzchni S (na zbiorze, na którym złożenie ma sens) jest funkcją różniczkowalną.

Definicja 8.10. Przekształcenie ϕ : S1 → S2 określone pomiędzy powierzch- niami regularnymi jest różniczkowalne, gdy każde złożenie

X−12 ◦ ϕ ◦ X1,

gdzie X1, X2 są dowolnymi parametryzacjami powierzchni S1, S2 odpowiednio (na zbiorze, na którym złożenie ma sens) jest odwzorowaniem różniczkowalnym pomiedzy zbiorami otwartymi w R2.

Definicja 8.11. Różniczką przekształcenia ϕ : S1 → S2 w punkcie p, gdzie S1, S2 są powierzchniami regularnymi, nazywamy przekształcenie liniowe dϕp : Tp(S1) → Tϕ(p)(S2) dane wzorem

p(w) = (ϕ ◦ α)0(0)

gdzie α : (−ε, ε) → S1 jest krzywą różniczkowalną położoną na S1 i taką, że p = α(0), w = α0(0).

(21)

Przykład 8.12. Rzut Mercatora Φ jest ważnym dla opisu np. stref czasowych odwzorowaniem różniczkowalnym sfery S2 bez biegunów na walec obrotowy C : x2+ y2= 1:

Φ(x, y, z) = x

px2+ y2, y

px2+ y2, z px2+ y2

!

dla (x, y, z) ∈ S2, (x, y, z) 6= (0, 0, ±1).

Definicja 8.13. Pierwszą formą podstawową powierzchni S w punkcie p nazy- wamy funkcję Ip: Tp(S) → R daną wzorem

Ip(w) = hw, wi dla w ∈ Tp(S).

Definicja 8.14. W parametryzacji X powierzchni S w punkcie p liczby

E(p) = hXu, Xui(X−1(p)), F (p) = hXu, Xvi(X−1(p)), G(p) = hXv, Xvi(X−1(p)) nazywamy współczynnikami pierwszej formy podstawowej Ip.

Jeżeli wektor w jest styczny do S w punkcie p oraz w jest wektorem stycznym do krzywej t 7→ X(u(t), v(t)) w punkcie 0, to

Ip(w) = E(u0)2+ 2F u0v0+ G(v0)2, gdzie wszystkie argumentami funkcji są 0 lub p.

Przykład 8.15. Współczynniki pierwszej formy podstawowej 1. Płaszczyzna: E = 1, F = 0, G = 1.

2. Wykres funkcji: E = 1 + (h0u)2, F = h0uh0v, G = 1 + (h0v)2. 3. Sfera: E = cos2v, F = 0, G = 1.

4. Powierzchnia obrotowa: E = ϕ2(v), F = 0, G = (ϕ0(v))2+ (ψ0(v))2. 5. Torus: E = (R + r cos v)2, F = 0, G = r2.

Definicja 8.16. Polem obszaru D zawartego w obrazie parametryzacji X nazy- wamy liczbę

A(D) = Z

X−1(D)

pEG − F2.

Przykład 8.17. Obszar Dε = X([ε, 2π − ε] × [ε, 2π − ε]) zawarty w obrazie parametryzacji torusa ma pole

A(Dε) = Z

[ε,2π−ε]×[ε,2π−ε]

pEG − F2= Z 2π−ε

ε

Z 2π−ε ε

r(R + r cos v)dudv

= (2π − 2ε)r Z 2π−ε

ε

(R + r cos v)dv

= (2π − 2ε)2rR + (2π − 2ε)r2(− sin(2π − ε) + sin ε)

Ponieważ wartość wyrażenia w ostatnim nawiasie dąży do 0 przy ε → 0+, więc pole całego torusa wynosi 4π2Rr.

(22)

Definicja 8.18. Odwzorowaniem Weingartena powierzchni S w punkcie p na- zywamy odwzorowanie liniowe dNp : Tp(S) → Tp(S) będące różniczką odwzo- rowania N : S2→ S przypisującego punktowi p ∈ S wektor normalny N (p) w tym punkcie.

Definicja 8.19. Drugą formą podstawową powierzchni S w punkcie p nazywamy funkcję IIp : Tp(S) → R daną wzorem

IIp(w) = −hdNp(w), wi dla w ∈ Tp(S).

Definicja 8.20. Krzywizną Gaussa powierzchni S w punkcie p nazywamy liczbę K(p) = det dNp

Definicja 8.21. Krzywizną średnią powierzchni S w punkcie p nazywamy liczbę H(p) = −1

2tr dNp

Operator dNp jest samosprzężony, więc posiada tylko rzeczywiste wartości własne.

Definicja 8.22. Dla odwzorowania Weingartena dNpistnieją dwie (niekoniecz- nie różne) liczby k1, k2oraz dwa wzajemnie prostopadłe wektory e1, e2∈ Tp(S) takie, że

dNp(e1) = −k1e1, dNp(e2) = −k2e2.

Liczby k1, k2 nazywamy krzywiznami głównymi, a kierunki wektorów e1, e2

— kierunkami głównymi powierzchni S w punkcie p.

Wniosek 8.23.

K = k1k2, H = k1+ k2

2 Definicja 8.24. Punkt p powierzchni S jest

• eliptyczny, gdy K(p) > 0,

• hiperboliczny, gdy K(p) < 0,

• paraboliczny, gdy K(p) = 0 i dNp6= 0,

• planarny, gdy dNp= 0.

Definicja 8.25. W parametryzacji X powierzchni S w punkcie p liczby

e(p) = hN(p), Xuu(X−1(p))i, f (p) = hN(p), Xuv(X−1(p))i, g(p) = hN(p), Xvv(X−1(p))i, nazywamy współczynnikami drugiej formy podstawowej IIp.

Jeżeli wektor w jest styczny do S w punkcie p oraz w jest wektorem stycznym do krzywej t 7→ X(u(t), v(t)) w punkcie 0, to

IIp(w) = e(u0)2+ 2f u0v0+ g(v0)2, gdzie wszystkie argumentami funkcji są 0 lub p.

(23)

Stwierdzenie 8.26.

K = eg − f2

EG − F2, H = 1 2

eG − 2f F + gE EG − F2 Przykład 8.27. Współczynniki drugiej formy i krzywizny

1. Wykres funkcji

Xuu= (0, 0, h00uu), Xuv = (0, 0, h00uv) Xvv = (0, 0, h00vv) e = h00uu

p(h0u)2+ (h0v)2+ 1, f = h00uv

p(h0u)2+ (h0v)2+ 1, g = h00uv

p(h0u)2+ (h0v)2+ 1 K = h00uuh00vv− (h00uv)2

((h0u)2+ (h0v)2+ 1)2 H = 1

2

h00uu+ h00vv+ h00uu(h0v)2− 2h00uvh0uh0v+ h00vv(h0u)2 ((h0u)2+ (h0v)2+ 1)32

2. Płaszczyzna: h ≡ 0, więc K ≡ 0, H ≡ 0.

3. Paraboloida hiperboliczna: h(u, v) = u2− v2

h0u= 2u, h0v= −2v, h00uu= 2, h00uv = 0, h00uu= −2

K = −4

(4u2+ 4v2+ 1)2, H = −4(u2+ v2) (4u2+ 4v2+ 1)2 4. Powierzchnia obrotowa

Xuu= (− cos u ϕ(v), − sin u ϕ(v), 0), Xuv= (− sin u ϕ0(v), cos u ϕ0(v), 0), Xvv = (cos u ϕ00(v), sin u ϕ00(v), ψ00(v)) e = − ϕψ0

p(ϕ0)2+ (ψ0)2, f = 0, g = − ϕ00ψ0− ϕ0ψ00 p(ϕ0)2+ (ψ0)2 K = −ψ000ψ0− ϕ0ψ00)

ϕ ((ϕ0)2+ (ψ0)2)2

5. Gdy powierzchnia obrotowa powstaje z krzywej sparametryzowanej dłu- gością łuku, to

0 = 10= (ϕ0)2+ (ψ0)20

= 2ϕ00ϕ0+ 2ψ00ψ0 skąd

K = −ϕ00 ϕ

(24)

6. Sfera: ϕ(v) = cos v, ψ = sin v

ϕ0(v) = − sin v, ψ0 = cos v, ϕ00(v) = − cos v, ψ00(v) = −sinv K ≡ 1

7. Torus: parametryzacja ϕ(v) = R + r cosvr, ψ(v) = r sinvr jest łukowa, więc wystarczy tylko ϕ00(v) = −1rcosvr, skąd już

K = cosvr r R + r cosvr

i krzywizna jest równa 0 na równoleżnikach z = r, ujemna wewnątrz, a dodatnia na zewnątrz torusa.

Cytaty

Powiązane dokumenty

4.24 Model jest kontrolowany przez cztery parametry opisu powierzchni: Rs – kolor określający zwierciadlane odbicie dla kierunku padania równego normalnej do powierzchni, Rd –

Na tej lekcji przypomnisz sobie, co to jest układ współrzędnych i jak zachowują się punkty w symetrii względem osi układu.. Wykonaj tyle zadań, ile potrzebujesz do

W odpowiedzi na Waszą prośbę informuję, że 30 kwietnia 2020 będzie możliwość poprawy pracy klasowej z działu 4 „Bryły” z pośrednictwem platformy

Na tej lekcji powtórzysz, co to jest układ współrzędnych i jak zachowują się punkty w symetrii względem osi układu.. Wykonaj tyle zadań , ile potrzebujesz do utrwalenia

Jeżeli nauczanie w obecnej formie przedłuży się, to w maju odbędzie się praca klasowa z działu „Symetrie” dla

Zrób notatkę w zeszycie, w której zapiszesz co to jest figura osiowosymetryczna. Podaj kilka przykładów figur osiowosymetrycznych i takich, które nie są osiowosymetryczne. Sprawdź

Jeśli mamy dany wykres funkcji y= f(x), to wykres ten jeśli odbijemy symetrycznie względem osi OX (góra- dół), to otrzymamy wykres funkcji y= -f(x). Zerknijcie jeszcze na przykład 1

Jeśli mamy dany wykres funkcji y= f(x), to jeśli odbijemy w nim punkty znad osi x pod nią i odwrotnie, otrzymamy wykres funkcji y=