• Nie Znaleziono Wyników

Obiekty regulacji Obiekty regulacji

N/A
N/A
Protected

Academic year: 2021

Share "Obiekty regulacji Obiekty regulacji"

Copied!
37
0
0

Pełen tekst

(1)

Obiekty regulacji Obiekty regulacji

Wykład 2 Wykład 2

(2)

Układ regulacji Układ regulacji

Obiekt w układzie regulacji

obiekt regulacji

w e u y

y ym

z

regulator urządzenie

wykonawcze obiekt

regulacji

element pomiarowy _

(3)

Obiekt regulacji Obiekt regulacji

Obiektem regulacji może być urządzenie, zespół urządzeń lub proces technologiczny, w którym w wyniku zewnętrznych oddziaływań realizuje się pożądany algorytm działania.

Na obiekt regulacji oddziałują:

- zmienne wejściowe nazywane sygnałami nastawiającymi u,

- zmienne szkodliwe nazywane sygnałami zakłócającymi z, Na wyjściu z obiektu regulacji otrzymujemy sygnały wyjściowe nazywane:

zmiennymi regulowanymi y.

(4)

Przykładowy obiekt regulacji Przykładowy obiekt regulacji ––

pomieszczenie z grzejnikiem pomieszczenie z grzejnikiem

w y

T

1 2

u

3

z1 z2 z3

z5

z4

(5)

Obiekty regulacji Obiekty regulacji

Do prawidłowego zaprojektowania układu regulacji niezbędna jest znajomość właściwości obiektów regulacji, to znaczy zależności pomiędzy wielkościami wejściowymi i wyjściowymi.

Stany ustalone, w których wielkości te pozostają niezmienne w czasie określa się charakterystykami statycznymi,

Stany nieustalone (wielkości zmienne w czasie) opisywane są przy pomocy charakterystyk dynamicznych.

Charakterystyki te można wyznaczyć analitycznie

lub doświadczalnie.

(6)

Metody wyznaczania charakterystyk Metody wyznaczania charakterystyk

statycznych statycznych

• Metoda analityczna polega na graficznym przedstawieniu zależności między sygnałem wejściowym i wyjściowym y = f(x), przy wykorzystaniu matematycznego opisu procesów fizycznych zachodzących w obiekcie.

• Metoda doświadczalna polega na wprowadzaniu do rzeczywistego układu kolejnych, niezmiennych w czasie, wartości sygnału wejściowego x1 do xn oraz pomiarze odpowiadających im wartości sygnału na wyjściu y1 do yn. Po uzyskaniu odpowiedniej ilości par (x,y) nanosi się je na wykres współrzędnych, aproksymuje otrzymując w ten sposób charakterystykę statyczną obiektu.

(7)

Przykładowa charakterystyka Przykładowa charakterystyka

statyczna obiektu regulacji statyczna obiektu regulacji

• Charakterystyki statyczne: a – zaworu regulacyjnego

(stałoprocentowa), b – wymiennika ciepła, c – wymiennika ciepła wraz z zaworem regulacyjnym (obiekt regulacji)

Charakterystyki te wykorzystano przy opracowywaniu zasad doboru zaworów regulacyjnych !

h/hs m a h

m/ms

Q/Qs

m b Q

h/hs

h Q/Qs

m

Q/Qs

m/ms

(8)

Charakterystyki dynamiczne obiektów Charakterystyki dynamiczne obiektów

regulacji regulacji

• Charakterystykę dynamiczną elementu lub układu otrzymuje się jako odpowiedź sygnału wyjściowego y(τ) na wymuszenie w postaci zmiennego w czasie sygnału wejściowego x(τ).

Przed podaniem wymuszenia sygnały x(τ) i y(τ) są w stanie ustalonym. Po podaniu wymuszenia i upływie odpowiednio długiego czasu układ ponownie znajdzie się w stanie ustalonym.

Charakterystyka dynamiczna jest funkcją

przejścia (transmitancją) pomiędzy dwoma

stanami ustalonymi.

(9)

Przykładowa charakterystyka Przykładowa charakterystyka dynamiczna obiektu regulacji dynamiczna obiektu regulacji

u, (h)

Δu = Δh

y, (ti)

τ

τ0 τ

Δy = Δti

T0 Tz

(10)

Analityczne wyznaczenie Analityczne wyznaczenie charakterystyki dynamicznej charakterystyki dynamicznej

Analityczne wyznaczenie funkcji przejścia wymaga rozwiązania równania różniczkowego, opisującego model układu.

W przypadku układów opisanych równaniami różniczkowymi liniowymi powszechnie wykorzystywane są metody operatorowe.

Idea tej metody polega na:

znalezieniu przekształcenia, które pozwala zastąpić równania różniczkowo-całkowe zwykłymi równaniami algebraicznymi.

Najczęściej stosowanym narzędziem

matematycznym jest przekształcenie Laplace’a.

(11)

Transmitancja Transmitancja

• Transmitancja (funkcja przejścia) jest definiowana jako stosunek transformaty Laplace’a sygnału wyjściowego (funkcji odpowiedzi) do transformaty Laplace’a sygnału wejściowego (funkcji wymuszającej), przy założeniu, że wszystkie warunki początkowe są zerowe.

• Transmitancja operatorowa jest szeroko wykorzystywana w analizie i projektowaniu układów automatycznej regulacji.

Znając transmitancję operatorową układu, można wyznaczyć odpowiedź układu y(t) na dowolne wymuszenie x(t) na wejściu do układu

(12)

Transmitancja Transmitancja

Jeżeli zależność pomiędzy sygnałem wyjściowym i wejściowym układu liniowego opiszemy przy pomocy równania różniczkowego o stałych współczynnikach, przy czym n≥m,

dokonując przekształceń Laplace’a obydwu stron równania u dt b

u b d

dt u b d

y dt a

y a d

dt y

a d m

m m m

m m

n o n n n

n

n 1 0

1 1 1

1

1 +...+ = + +...+

+

+ + +

=

+ + + b u

dt u b d

dt u b d

L y

dt a y a d

dt y a d

L m

m m m

m m n o

n n n

n

n 1 0

1 1 1

1

1 ... ...

(13)

Transmitancja Transmitancja

• otrzymamy równanie w postaci (2.3)

• Stosownie do przyjętej definicji transmitancji, jako stosunku transformaty Laplace’a sygnału wyjściowego (funkcji

odpowiedzi) do transformaty sygnału wejściowego (funkcji wymuszającej),

(

ansn + an 1sn1 +... + a1s + a0

)

Y(s) =

(

bmsm + bm1sm1 +...+ b1s + b0

)

U (s)

[ ] [ ] ( ( ) )

)

( U s

s Y u

L y s L

G = =

(14)

Transmitancja operatorowa Transmitancja operatorowa

• Po przekształceniach równania (2.3) otrzymamy wymierną funkcję zmiennej zespolonej {s} nazywaną transmitancją operatorową

0 1

1 1

0 1

1 1

...

...

) (

) ) (

( a s a s a s a

b s

b s

b s

b s

U s s Y

G

n

n n

n

m m

m m

+ +

+ +

+ +

+

= +

=

(2.5)

(15)

Transmitancja Transmitancja

W praktyce stosuje się przekształcenie wzoru (2.5) do postaci zawierającej następujące parametry:

współczynnik wzmocnienia K,

stałe czasowe (zastępcze stałe czasowe): T, Tz,

czas opóźnienia (liczba tłumienia): Tt, To,

zmienną zespoloną {s}, (s=b+jω),

Transmitancja przykładowego obiektu regulacji (obiekt inercyjny wyższego rzędu)

0 1

1 1

0 1

1 1

...

...

) (

) ) (

( a s a s a s a

b s

b s

b s

b s

U s s Y

G

n

n n

n

m m

m m

+ +

+ +

+ +

+

= +

=

(2.5)

sT0

e

-

) 1

( ⋅

+

≅ ⋅

s T

s K G

z

(16)

Doświadczalne metody wyznaczania Doświadczalne metody wyznaczania

charakterystyk dynamicznych charakterystyk dynamicznych

• Doświadczalne metody identyfikacji stosowane są w przypadku niedostatecznej znajomości zjawisk zachodzących w obiekcie regulacji.

• Najczęściej jest stosowana metoda oceny transmitancji obiektu na podstawie odpowiedzi na wymuszenie skokowe nazywana charakterystyką skokową.

• Metoda umożliwia proste wyznaczenie współczynnika wzmocnienia obiektu statycznego, równego stosunkowi wartości ustalonej odpowiedzi skokowej do wartości sygnału wejściowego

u K y

= ∆

(17)

Przykład doświadczalnego sposobu Przykład doświadczalnego sposobu sporządzania charakterystyki skokowej sporządzania charakterystyki skokowej

• Metoda rejestracji odpowiedzi obiektu regulacji (temperatury powietrza w ogrzewanym pomieszczeniu) na wymuszenie skokowe

2

τ u

Δu ti

τ

T

ti=f(τ)

))

odpowiedź skokowa wymuszenie skokowe

3 z4

1 z5

z1 z2 z3

y=ti

(18)

Charakterystyki skokowe Charakterystyki skokowe

• Uzyskana eksperymentalnie odpowiedź obiektu regulacji (temperatury powietrza w ogrzewanym pomieszczeniu) na wymuszenie skokowe.

u, (h)

Δu = Δh

y, (ti)

τ

τ0 τ

Δy = Δti

T0 Tz

u K y

= ∆

sT0

e

-

) 1

( ⋅

+

≅ ⋅

s T

s K G

z

(19)

Inercyjny kształt odpowiedzi skokowej Inercyjny kształt odpowiedzi skokowej

• Po zrównaniu nowej wartości strat ciepła pomieszczenia (przy zmienionej różnicy temperatury wewnętrznej i zewnętrznej) z ilością ciepła dostarczanego przez grzejnik powstaje nowy stan równowagi i od tego

momentu temperatura powietrza utrzymuje

się na stałym poziomie.

(20)

Rodzaje charakterystyk dynamicznych Rodzaje charakterystyk dynamicznych

obiektów regulacji obiektów regulacji

Obiekty regulacji klasyfikuje się zwykle ze względu na ich własności dynamiczne.

Podstawowym kryterium podziału obiektów regulacji jest samodzielne osiąganie stanu trwałej równowagi po wprowadzeniu skokowego wymuszenia sygnału wejściowego.

Zgodnie z tym kryterium rozróżnia się dwie grupy obiektów:

• Obiekty astatyczne (bez samowyrównania), których wartość odpowiedzi skokowej dąży do nieskończoności.

• Obiekty statyczne (z samowyrównaniem), których odpowiedzi skokowe dążą do wartości skończonej.

(21)

Obiekty astatyczne (bez Obiekty astatyczne (bez

samowyrównania) samowyrównania)

• Obiekty, których wartość odpowiedzi na wymuszenie skokowe dąży do nieskończoności i nie osiąga nowego stanu ustalonego nazywane są astatycznymi (bez samowyrównania).

• Własności dynamiczne idealnego obiektu całkującego można opisać równaniem różniczkowym:

• transmitancją operatorową:

) ) (

( τ

τ

τ K u

d

dy = ⋅

) 1 s (

G = ⋅

K )

s ( ) Y

s (

G = =

(22)

Astatyczny obiekt regulacji Astatyczny obiekt regulacji

• Astatyczny obiekt regulacji jakim jest zbiornik wody z regulowanym poziomem

Δus u

τ

τ0

0

τ y

Δτ

Δy Au

y = h u = hs→ V

Au

y d

u

K y =

=

τ

(23)

Obiekty statyczne (z samowyrównaniem) Obiekty statyczne (z samowyrównaniem)

Odpowiedzi obiektów cieplnych na

wymuszenie skokowe można podzielić na :

• proporcjonalne,

• inercyjne pierwszego rzędu,

• inercyjne pierwszego rzędu z opóźnieniem,

• inercyjne wyższego rzędu.

(24)

Podstawowe charakterystyki skokowe Podstawowe charakterystyki skokowe

obiektów statycznych obiektów statycznych

1. Obiekt proporcjonalny

Charakterystyka skokowa Transmitancja operatorowa ( K- współczynnik wzmocnienia),

y

Δy

τ

)

( u

K y s

G

= ∆

=

(25)

Podstawowe charakterystyki skokowe Podstawowe charakterystyki skokowe

obiektów statycznych obiektów statycznych

2. Obiekt inercyjny pierwszego rzędu

Charakterystyka skokowa Transmitancja operatorowa T- stała czasowa

T

Δy

τ y

1 s

T ) K

s (

G = ⋅ +

(26)

Podstawowe charakterystyki skokowe Podstawowe charakterystyki skokowe

obiektów statycznych obiektów statycznych

3. Obiekt inercyjny pierwszego rzędu z opóźnieniem

Charakterystyka skokowa Transmitancja operatorowa

Tt –czas opóźnienia (opóźnienie transportowe).

T

Tt τ

y

Tt s

e

-

1 s

T ) K

s (

G ⋅

+

= ⋅

(27)

Podstawowe charakterystyki skokowe Podstawowe charakterystyki skokowe

obiektów statycznych obiektów statycznych

4. Obiekt inercyjny wyższego rzędu

Charakterystyka skokowa Transmitancja operatorowa

To – opóźnienie zastępcze, Tz - zastępcza stała czasowa

T0 Tz τ

y

sT0

e

-

) 1

( ⋅

+

≅ ⋅

s T

s K G

z

(28)

Przykłady charakterystyk dynamicznych Przykłady charakterystyk dynamicznych

obiektów cieplnych obiektów cieplnych

1. Obiekt proporcjonalny - odcinek przewodu z zaworem regulacyjnym oraz czujnikiem przepływu

Wielkością charakteryzującą proporcjonalny obiekt regulacji przepływu jest współczynnik wzmocnienia

V

u = h y = V

u

τ0 τ

Δu

y

Δy = K·Δu

τ0 τ

=

=

%

3 / h m

h V u

K y

(29)

2. Obiekt proporcjonalny z 2. Obiekt proporcjonalny z

opóźnieniem opóźnieniem

a. Przewód z mieszającym zaworem regulacyjnym oraz czujnikiem temperatury – równanie opisujące charakterystykę skokową:

y(τ) = K· u(τ – T

t

)

lub w postaci operatorowej

T

τ0 τ

Δu u

u = h A

B

AB

Tt y

τ0 τ

Δy = K·Δu

y = tc

s Tt

e K )

s (

G = ⋅

(30)

2. Obiekt proporcjonalny z 2. Obiekt proporcjonalny z

opóźnieniem opóźnieniem

b.Taśmowy podajnik węgla

Grubość warstwy paliwa y w odległości l od początku podajnika będzie równa

grubości warstwy na początku podajnika u (K = = 1) po upływie czasu Tt =

v

l

u y

h

u y

v l

(31)

3. Obiekt inercyjny pierwszego rzędu 3. Obiekt inercyjny pierwszego rzędu

Podgrzewacz ciepłej wody z trójdrogowym zaworem regulacyjnym Równanie charakterystyki jako odpowiedź na wymuszenie skokowe:

lub w postaci transmitancji operatorowej:

T

Δu=Δh u

τ

y

τ Δy=K·Δu

τ0 T τ0

) 1

( ) ( )

( K u e T

y

τ τ

τ =

1 s T ) K s (

G = +

(32)

4. Obiekt inercyjny pierwszego rzędu z 4. Obiekt inercyjny pierwszego rzędu z

opóźnieniem opóźnieniem

Przewód z trójdrogowym zaworem regulacyjnym oraz czujnikiem temperatury w obudowie ochronnej

Transmitancja operatorowa obiektu inercyjnego pierwszego rzędu z opóźnieniem e-Tts

1 s T ) K s (

G

+

=

T

τ0 τ

Δu u

u = h A

B

AB

Tt y

τ0 τ

Δy = K·Δu

y = tc

T

(33)

5. Obiekt inercyjny wy ższego rzędu.

5. Obiekt inercyjny wy ższego rzędu.

Kocioł z palnikiem, instalacją c.o., grzejnikiem oraz pomiarem temperatury w pomieszczeniu.

Charakterystyka obiektu składa się z: charakterystyki proporcjonalnej palnika, proporcjonalnej z opóźnieniem przewodów instalacji, inercyjnej pierwszego rzędu kotła, grzejnika i czujnika temperatury oraz inercyjnej pierwszego rzędu z opóźnieniem pomieszczenia

T0

τ0 τ

Δy=K·Δu Tz

y

τ0

Δu τ u

T

palnik kocioł przewody grzejnik pomieszczenie czujnik

u y

b

(34)

Obiekt inercyjny wyższego rzędu Obiekt inercyjny wyższego rzędu

• Zastępcza transmitancja obiektu inercyjnego wyższego rzędu zapisywana jest w postaci

lub

gdzie: Tz - zastępcza stała czasowa, To – opóźnienie zastępcze, n – rząd inercyjności.

s T - z

e

0

1 s

T ) K

s (

G

+

= ⋅

s T - n

e

t

) 1 s

T ( ) K s (

G

+

= ⋅

(35)

Obiekty inercyjne wyższego rzędu Obiekty inercyjne wyższego rzędu

• Charakterystyki skokowe obiektów regulacji o różnych rzędach inercyjności

T Tz2

Tz3

Tz4

Tz5 y

T02 T03

T04

T05

n=0

n=1 n=2

n=3 n=4 n=5

τ

(36)

Przydatność znajomości charakterystyk Przydatność znajomości charakterystyk

dynamicznych obiektów regulacji dynamicznych obiektów regulacji

• Uzyskane z wykresów charakterystyk skokowych wartości stałych czasowych oraz opóźnień obiektów regulacji są wykorzystywane do:

• oceny stopnia trudności regulacji,

• doboru typu regulatora

• optymalizacji jego nastaw dynamicznych.

(37)

KONIEC

KONIEC

Cytaty

Powiązane dokumenty

Metoda doboru układu regulacji przedstawiona w pracy opiera się na minimalizacji kwadratowego kryterium całkowego. Wprowadzenie tego kryterium jako ilościowej oceny

[r]

Intencją projektu ustawy o ogólnoeuropejskich indywidualnych produktach emerytalnych jest zachęta do długoterminowego oszczędzania na cele emerytalne w III (indywidualnym)

Projekt wywiera pozytywny wpływ na przedsiębiorców, szczególnie na sektor mikro i małych przedsiębiorstw, jak również dla obywateli poprzez uproszczenie

W ramach ewaluacji Funduszu w szczególności wzięta zostanie pod uwagę liczba zrealizowanych zadań dojazdowych do terminali intermodalnych lub specjalnych stref ekonomicznych,

w sprawie warunków technicznych dozoru technicznego w zakresie eksploatacji niektórych urządzeń ciśnieniowych (Dz. 1269) i związanie się Polski jako kraju

Niniejsza praca dotyczy trzech zagadnień: pierwsze - to realizowalność regulacji stałowartościowej obiektów wielowymiarowych, drugie - to częściowe odsprzęganie stanów

[r]