• Nie Znaleziono Wyników

Cement treated recycled crushed concrete and masonry aggregates for pavements

N/A
N/A
Protected

Academic year: 2021

Share "Cement treated recycled crushed concrete and masonry aggregates for pavements"

Copied!
268
0
0

Pełen tekst

(1)







CementTreatedRecycledCrushedConcrete

andMasonryAggregatesforPavements

                        

Dongxing Xuan   



(2)
(3)

   

CementTreatedRecycledCrushedConcrete 

andMasonryAggregatesforPavements 

           Proefschrift  terverkrijgingvandegraadvandoctor aandeTechnischeUniversiteitDelft, opgezagvandeRectorMagnificusprof.ir.K.C.A.M.Luyben, voorzittervanhetCollegevoorPromoties, inhetopenbaarteverdedigenopmaandag01oktober2012om10:00uur   door  DongxingXuan  MasterofScienceinMaterialsScience&Engineering WuhanUniversityofTechnology,P.R.China geborenteQinggang,Helongjiang,P.R.China  

(4)

 Copromotor:   Ir.L.J.M.Houben   Samenstellingpromotiecommissie:  RectorMagnificus TechnischeUniversiteitDelft,voorzitter Prof.dr.ir.A.A.A.Molenaar TechnischeUniversiteitDelft,promotor Prof.dr.Z.H.Shui WuhanUniversityofTechnology,promotor Ir.L.J.M.Houben TechnischeUniversiteitDelft,copromotor Prof.F.AgrelaSainz,PhD UniversityofCordoba Prof.dr.ir.H.E.J.G.Schlangen TechnischeUniversiteitDelft Prof.ir.A.Q.C.vanderHorst TechnischeUniversiteitDelft Dr.ir.C.A.P.M.vanGurp KOACͲNPC     Prof.dr.ir.K.vanBreugel TechnischeUniversiteitDelft,reservelid   Publishedanddistributedby:  DongxingXuan  SectionofRoadandRailwayEngineering FacultyofCivilEngineeringandGeosciences DelftUniversityofTechnology P.O.Box5048,2600GADelft,theNetherlands EͲmail:xuandx@whut.edu.cn;xuandx@gmail.com  ISBN:  978Ͳ94Ͳ6203Ͳ150Ͳ0  Printing:WohrmannPrintService,Zutphen,theNetherlands  ©2012byDongxingXuan 

All rights reserved. No part of this publication protected by this copyright may be reproduced, stored in any retrieval system or transmitted in any form or by any means, electronic or mechanical, including photocopying or recording, without the priorwrittenpermissionfromthepublisher. 

(5)

                                              Tomywife,XuanXUAN(⦴⪷),whoalwayssupportsme, andmyson,HemingXUAN(⦴㦧䬝),whosesmilealways cheersmeup.  

(6)
(7)

Acknowledgements

TheresearchpresentedinthisdissertationwasfundedbytheChinaScholarship Council and the Road and Railway Engineering section of the Faculty of Civil Engineering and Geosciences at the Delft University of Technology (TUD) in the Netherlands.TheworkofthisresearchwasfullycarriedoutatTUD.Theauthor wouldliketothankthesectionandstaffforalltheirassistanceandcooperation duringthelastfiveyears. 

Inparticularmythanksandsinceregratitudegotomypromotor,Prof.dr.ir.A.A.A. Molenaar.Heproposedthisresearchpositiontome,andhasgivencarefulreview and invaluable comments on test results and reports during my PhD study. This dissertation could not be completed without his overall support. I also wish to extendmyappreciationtomypromotor,Prof.dr.Z.H.Shui.Heencouragedmeto study abroad and to broaden my academic horizon, which is important for my futurecareer. 

The assistance I got from my coͲpromotor, Associate Prof.Ir. L.J.M. Houben, is greatlyappreciated.TheknowledgeIobtainedfromhisdailysupervision,careful concerns and precious detailed comments on my dissertation was extremely valuable.Iwasveryluckytoworkwithhim.

The help I got from Prof.dr.ir. H.E.J.G. Schlangen (Microlab, Faculty of Civil EngineeringandGeosciences,TUD)ishighlyappreciatedaswell.Iamgratefulfor hisguidanceandcommentsonmynumericalwork.Itmadeitfeasibletopredict the mechanical properties of my researched material by means of computer simulations.

Special thanks go to Dr.ir. C.A.P.M. van Gurp and Ir. F. Stas (KOACͲNPC in the Netherlands), who presented their experience of cement treated recycled materials and arranged an onͲsite visit in Belgium. It made me realize that the qualitycontrolofmyresearchedmaterialshouldbecomprehensivelytakeninto account.IappreciatedtheirhelpandIenjoyedthediscussionswithIr.F.Stas.  AwordofthanksisalsoextendedtoProf.dr.F.AgrelaSainz(AreaofConstruction Engineering, University of Cordoba, Spain) for his information about the real applicationofcementtreatedmixgranulatewithrecycledmasonryandconcrete in practice. His results showed the applicability of my researched material in practice. 

(8)

Marco, Jan Moraal, Dirk, Gang, Milliyon and Jian) as well as all present Ph.D. studentsattheRoadandRailwayEngineeringsectionofTUDfortheirsupport.It wasanicetimetoworkwithallofyou;thankyouallforthecontributiontomy work and help to me. Special thanks are given to my colleagues in my office, DiederikvanLentandNingLi,whomademylifeenjoyableduringthebusyand challengingyearsasaPhDstudent.    ⦴ьޤ August,2012 Delft

(9)

Summary

This research is focusing on the characterization of the mechanical and deformation properties of cement treated mixtures made of recycled concrete and masonry aggregates (CTMiGr) in relation to their mixture variables. An extensive laboratory investigation was carried out, in which the mechanical properties of CTMiGr and the deformation characteristics relevant to shrinkage cracksusceptibilitywereevaluated. 

The main aim of this research is to develop models which allow the structural

propertiesofCTMiGrtobeestimatedfromitsmixturecomposition.Thesemodels

are then used to develop a mixture optimization tool for CTMiGr taking into account the requirements that have to be set to the material in structural pavementdesigns.

To realize the research objective, firstly a series of tests were conducted on CTMiGr mixtures which varied in composition. The test program comprised of measuring compression, indirect tension and deformation properties of CTMiGr mixtures. The recycled construction and demolition materials used in this study were recycled masonry aggregate (RMA) and recycled concrete aggregate (RCA) whichareusedforunboundgranularbases/subͲbasesintheNetherlands.Fora goodunderstandingoftheinfluenceofthemixturevariablesonthepropertiesof

CTMiGr,fourimportantmixturevariables(ratioofamountofRMAtoRCAbymass,

cement content, degree of compaction and curing time) were selected to be takenintoaccountinanelaborateexperimentalprogram. 

Theexperimentalresultsgaveinsightintotheinfluencesofthedifferentmixture

variables on the structural properties of CTMiGr. They showed that the

mechanical properties and deformation behavior of CTMiGr depend on the

mixture proportioning of CTMiGr. It was possible to develop accurate models to estimatethestructuralpropertiesofCTMiGrfromthemixturevariables. 

It is noteworthy that the RMA content in CTMiGr strongly determines its

mechanicalanddeformationproperties.DuetothepresenceofthelowͲstrength RMA, failure of CTMiGr originates either through the RMA particles or in cracks and discontinuities in the internal structure (the matrix) or in the bonding layer between aggregates and matrix. This will depend on the mixture variables. Numerical work using a lattice model further demonstrated that if the tensile

strengthofRMAishigherthan1.0MPa,itscontributiontothestrengthofCTMiGr

(10)

designedpavementstructure.Ifinapavementtheverticalcompressivestresses atthetopoftheCTMiGrlayerarelow,crushingthatmightoccuratthetopofthe CTMiGr layer is not an issue. In that case it is preferred to design the CTMiGr mixture by lowering the cement content, enhancing the degree of compaction and increasing the RMA content. On the other hand, when the vertical

compressivestressesatthetopoftheCTMiGrlayerarehigh,itisrecommended

to decrease the RMA content as well as to adjust the cement content and the degree of compaction. In all cases increasing the degree of compaction is beneficial.  

(11)

Samenvatting

Dit onderzoek betreft de karakterisering van de mechanische en vervormingseigenschappen van cementgebonden mengsels van gerecycled

betonͲenmetselwerkaggregaat(CTMiGr)inrelatietotmengselvariabelen.Ineen

uitgebreid laboratoriumonderzoek op CTMiGr mengsels zijn de mechanische

eigenschappenendevervormingskarakteristieken,relevantvoordegevoeligheid vanhetmateriaalvoorkrimpscheuren,geëvalueerd. 

Het belangrijkste doel van dit onderzoek was om modellen te ontwikkelen

waarmeedestructureleeigenschappenvanCTMiGrvoorspeldkunnenwordenop

basis van de mengselsamenstelling. Deze modellen zijn vervolgens gebruikt om een procedure voor de optimalisatie van het ontwerp van CTMiGr mengsels te ontwikkelen, rekening houdend met de eisen waaraan het materiaal moet voldoenbijhetstructureelontwerpvanverhardingen.

Om het onderzoeksdoel te realiseren is allereerst een serie proeven uitgevoerd

op CTMiGr mengsels met verschillende samenstelling. Het proefprogramma

omvatte het meten van de drukͲ, indirecte trekͲ en vervormingseigenschappen

van CTMiGr mengsels. De in dit onderzoek gebruikte gerecyclede bouwͲ en

sloopafval materialen zijn gerecycled metselwerkaggregaat (RMA) en gerecycled betonaggregaat (RCA) waarvan mengsels in Nederland worden toegepast als ongebonden wegfundering. Voor een goed begrip van de invloed van de

mengselvariabelen op de eigenschappen van CTMiGr mengsels zijn vier

belangrijke variabelen (verhouding van de massapercentages RMA en RCA, cementgehalte,verdichtingsgraadencuringtijd)inbeschouwinggenomenineen uitgebreidexperimenteelonderzoek. 

De proefresultaten geven inzicht in de invloed van de verschillende mengselvariabelen op de structurele eigenschappen van CTMiGr. De resultaten tonen aan dat de mechanische eigenschappen en het vervormingsgedrag van CTMiGr afhankelijk zijn van de samenstelling van het mengsel. Het is mogelijk gebleken om accurate modellen te ontwikkelen voor het voorspellen van de

structureleeigenschappenvanCTMiGropbasisvandemengselvariabelen. 

Het RMA gehalte in CTMiGr bepaalt in sterke mate de mechanische en

vervormingseigenschappenvanhetmengsel.Alsgevolgvandeaanwezigheidvan zwak RMA aggregaat treedt bezwijken van CTMiGr op door het RMA aggregaat heenofinscheurenendiscontinuïteitenindeinternestructuur(dematrix)ofin de hechtlaag tussen het aggregaat en de matrix. De wijze van bezwijken is

(12)

Op basis van een uitgebreide analyse van de structurele eigenschappen van

CTMiGrwordentenslotteenkelerichtlijnengegevenvoordeoptimalisatievanhet

mengsel. Op deze wijze wordt het mengselontwerp van CTMiGr optimaal

gekoppeld aan de karakteristieken van de ontworpen verhardingsconstructie. Indienineenverhardingsconstructiedeverticaledrukspanningaandebovenzijde van de CTMiGr laag klein is, dan is verbrijzeling van die CTMiGr laag niet aan de orde. In dat geval heeft het de voorkeur om van het CTMiGr mengsel het cementgehalteteverlagenenzoweldeverdichtingsgraadalshetRMAgehaltete verhogen. Wanneer echter de verticale drukspanning aan de bovenzijde van de

CTMiGrlaaggrootis,danwordtaanbevolenomhetRMAgehaltetereducerenen

zowelhetcementgehaltealsdeverdichtingsgraadaantepassen.Inallegevallen heeftverhogingvandeverdichtingsgraadeengunstigeffect. 

(13)

1  INTRODUCTION ... 1 1.1CEMENTTREATEDBASES/SUBͲBASES ... 2 1.1.1TypicalpavementdesignswithCTGrM... 2 1.1.2Granularmaterialsusedforcementtreatment ... 3 1.1.3TraditionalmixturedesignofCTGrM ... 4 1.2AIMANDSCOPEOFTHERESEARCH ... 5 1.3ORGANIZATIONOFTHEDISSERTATION... 6 REFERENCES ... 7 2  LITERATUREREVIEW ... 9 2.1STRUCTURALREQUIREMENTSOFCTGrMASAPAVEMENTLAYER ... 10 2.2MATERIALSANDTRADITIONALMIXTUREDESIGNOFCTGrM... 13 2.2.1Materialssuitablefortreatmentwithcement... 13 2.2.2Requirementsoftreatedgranularmaterials... 15 2.2.3Traditionalmixturedesign ... 18 2.3TYPICALSTRUCTURALPROPERTIESOFCTGrM ... 19 2.3.1Unconfinedcompressivestrength ... 20 2.3.2Tensilestrength... 26 2.3.3Modulusofelasticity... 29 2.3.4VolumetricdeformationofCTGrM... 35 2.3.5FatigueofCTGrM... 40 2.4CONCLUSIONS ... 43 REFERENCES ... 44 3  MATERIALS,MIXTUREDESIGNANDTESTPROGRAM... 49 3.1RECYCLEDMATERIALS ... 50 3.1.1Recycledmasonryaggregate ... 52 3.1.2Recycledconcreteaggregate ... 57 3.1.3Gradingcurveofmixgranulates ... 60 3.1.4Portlandcement ... 61 3.2MOISTURECONTENTͲDRYDENSITYRELATIONSHIPOFCTMiGr... 61 3.2.1VisualworkabilityoffreshCTMiGr... 61 3.2.2InfluenceofcementcontentonmoistureͲdrydensitycurve... 63 3.2.3InfluenceofRMAcontentonmoistureͲdrydensitycurve ... 63 3.2.4OptimummoisturecontentanddrydensityofCTMiGr... 64 3.3MIXTUREDESIGN... 65 3.3.1Investigatedmaterialvariables ... 65 3.3.2Centralcompositedesignintwofactors... 67 3.3.3Mixturepreparation... 68 3.4TESTPROGRAM ... 70

(14)

REFERENCES ... 73

4  MONOTONICANDCYCLICCOMPRESSIVETESTS ... 75

4.1APPLICATIONOFFRICTIONREDUCTIONSYSTEM ... 75

4.1.1Influenceoffrictionreductionsystem ... 76

4.1.2Failurebehavioranditscriteria ... 78

4.2EdynamicANDPOISSON’SRATIOOFCTMiGr... 79

4.2.1CycliccompressivetestsetͲupandtestconditions... 79

4.2.2Determinationofpropertiesfromrepeatedloadcompression ... 81

4.2.3Measurementofaxialandradialdeformation ... 82

4.2.4EdynamicandPoisson’sratio... 84

4.3EstaticANDUCSOFCTMiGr... 87

4.3.1MonotoniccompressivesetͲupandtestconditions ... 87

4.3.2Determinationofpropertiesfrommonotoniccompression ... 87

4.3.3DataofEstaticandUCS ... 88

4.3.4StressͲstraincurveinmonotoniccompressivetest ... 92

4.4ESTIMATIONOFUCS,Estatic,EdynamicANDPOISSON’SRATIO ... 96

4.4.1EstimationofUCSinrelationtomixturevariables... 96

4.4.2RelationbetweenEstaticandUCS ... 100

4.4.3EstimationofEstaticinrelationtomixturevariables... 100

4.4.4RelationbetweenEstaticandEdynamic... 103

4.4.5EstimationofEdynamicinrelationtomixturevariables... 104

4.4.6Poisson’sratio ... 106 4.4.7Estimationmodelsofmechanicalpropertiesincompression... 107 4.4.8Verificationoftheproposedmodels... 108 4.5CRITERIAFORUCSASAROADBASEMATERIAL ... 109 4.6RESPONSESURFACEANALYSISOFCOMPRESSIVEPROPERTIES... 110 4.6.1Responsevariablesofresponsesurface ... 110

4.6.2EstimationmodelsofUCSandEstaticfromexplanatoryvariables.. 111

4.6.3ContourplotofUCSofCTMiGr... 111

4.6.4ContourplotofEstaticofCTMiGr... 112

4.6.5ResponsesurfaceanalysisofratioofUCStoEstatic... 113 4.6.6ContourplotofUCSandratioofUCStoEstatic... 114 4.7DURABILITYOFCTMiGrSUBJECTEDTOFREESEͲTHAWCYCLES... 115 4.8CONCLUSIONS ... 117 REFERENCES ... 118 5  MONOTONICANDCYCLICINDIRECTTENSILETESTS ... 121 5.1INDIRECTTENSILETESTEQUIPMENTANDTESTCONDITIONS... 122 5.1.1Monotonicindirecttensiletest ... 122 5.1.2Cyclicindirecttensiletest ... 123

(15)

5.2.2EstimationofITSinrelationtomixturevariables ... 127

5.2.3EstimationofErinrelationtomixturevariables ... 131

5.2.4RelationbetweenITSandEr... 134

5.2.5RelationbetweenErinITTandEdynamicincompression ... 135

5.2.6StrengthcriteriaofITSforacementtreatedbasematerial... 136 5.2.7FailurepatternofCTMiGr... 137 5.3RESPONSESURFACEANALYSISOFINDIRECTTENSILEPROPERTIES ... 138 5.3.1Responsevariablesofresponsesurface ... 138 5.3.2EstimationmodelsofITSandErfromexplanatoryvariables... 139 5.3.3ContourplotofITSofCTMiGr... 139 5.3.4ContourplotofErofCTMiGr... 140 5.3.5ResponsesurfaceanalysisofratioofITStoEr... 140 5.3.6ContourplotsofITSandratioofITStoEr... 141 5.4RELATIONBETWEENITSANDUCSOFCTMiGr... 142 5.4.1DerivedrelationbetweenITSandUCS... 142 5.4.2SimplifiedrelationbetweenITSandUCS ... 143 5.5ESTIMATIONMODELSOFMECHANICALPROPERTIESOFCTMiGr... 144 5.6CONCLUSIONS ... 146 REFERENCES ... 147  6  DEFORMATIONANDCRACKINGBEHAVIOROFCTMiGr... 149 6.1SPECIMENPREPARATIONANDDEFORMATIONDETERMINATION ... 150 6.1.1Mixturedesign ... 150 6.1.2Specimenpreparation... 152 6.1.3Determinationofdeformationduringcuringtime ... 154 6.1.4Determinationofcoefficientofthermalexpansion(CTE)... 154 6.2DEFORMATIONBEHAVIOROFCTMiGr... 155 6.2.1ResultsobtainedduringoneͲyearcuring ... 155 6.2.2ModelingthedeformationofCTMiGrsealedfor7days... 159 6.2.3ShrinkagemodelingofCTMiGrwhenexposedto50%RH... 162 6.2.4EstimationmodelofthedeformationofCTMiGr... 168 6.3THERMALDEFORMATIONBEHAVIOR... 169 6.3.1Thermaldeformationdata ... 169 6.3.2IdentificationofvariableseffectingtheCTE ... 171 6.3.3AsimplifiedmodeltoestimatetheCTE ... 172 6.4ESTIMATIONOFCRACKSPACINGANDWIDTHINACTMiGrBASE ... 173 6.4.1MechanicalanalysisofshrinkagecrackingofCTB... 174 6.4.2InducedtensilestressinthebaselayerofCTMiGr... 177 6.4.3ModelsforclimateandstructuralpropertiesofCTMiGr... 179 6.4.4SpacingandwidthofcracksinacontinuousCTMiGrlayer... 184 6.5CONCLUSIONSANDRECOMMENDATIONS... 189 6.5.1Conclusions ... 189

(16)

7  NUMERICALANALYSISOFTHEFRACTUREOFCTMiGr... 195 7.1THEBEAMLATTICEMODEL ... 196 7.1.1ConstructionofthelatticemeshformonotonicITT ... 196 7.1.2Implementationofheterogeneity... 197 7.1.3Fracturecriterion ... 198 7.2CHARACTERIZATIONOFMECHANICALPROPERTIESOFEACHPHASE... 198 7.2.1Testedsamples ... 198 7.2.2Measuredandestimatedpropertiesofeachphase... 200 7.3NUMERICALANALYSISOFTHEFRACTUREOFCTMiGr... 204 7.3.1Fracturesimulation ... 204 7.3.2Simulationresults... 206 7.3.3Comparisonbetweensimulatedandexperimentalresult ... 207 7.3.4InfluenceofRMAcontentonthesimulation ... 209 7.3.5InfluenceofRMAstrengthonthefracture ... 210 7.4CONCLUSIONSANDRECOMMENDATIONS... 211 7.4.1Conclusions ... 211 7.4.2Recommendations ... 212 REFERENCES ... 212 8  PRACTICALIMPLICATIONSFORAPPLICATIONOFCTMiGr... 215 8.1OPTIMIZATIONOFMECHANICALPROPPERTIESOFCTMiGr... 215 8.1.1ContourcurvesoftheUCSandtheratioofUCStoEstatic... 215 8.1.2ContourcurvesoftheITSandtheratioofITStoEr... 217 8.2MITIGATIONOFSHRINKAGECRACKINGOFCTMiGr... 218 8.3CONSIDERATIONSFORMIXTUREDESIGNOFCTMiGr... 219 8.3.1TendencyofmixtureoptimizationofCTMiGr... 219 8.3.2QualitycontrolofrecycledCDW ... 221 8.4CONCLUSIONS ... 222 REFERENCES ... 223 9  CONCLUSIONSANDRECOMMENDATIONS... 225 9.1CONCLUSIONS ... 225 9.2RECOMMENDATIONS ... 228 AppendixA ... 229 AppendixB ... 233 AppendixC ... 237 AppendixD... 240 AppendixE ... 243 AppendixF ... 246 

(17)

ACV  AggregateCrushingValue CBR  CaliforniaBearingRatio CDW  ConstructionandDemolitionWaste CTGrM  CementTreatedGranularMaterials CTMiGr CementTreatedMixGranulateswithRecycledMasonryandConcrete Aggregates CTB  CementTreatedBase CTE  CoefficientofThermalExpansion

CR2 CR2 implies that the specimen is a sealed specimen and is curing

during7Ͳdaysat20±2°Cduringwhichthereisnolossofwater.After these7daysthewrappedfoilisremovedandthespecimenisfurther exposedinairat50±5%RHand20±2°C. DTS  DirectTensileStrength Edynamic  Dynamicelasticmodulusincycliccompressivetest Er   Resilientelasticmodulusincyclicindirecttensiletest

EsorEstatic Staticelasticmodulusinmonotoniccompressivetest

FTS  FlexuralTensileStrength  ITS   IndirectTensileStrength ITT   IndirectTensileTest PI   PlasticityIndex RH   RelativeHumidity RMA  RecycledMasonryAggregates  RCA  RecycledConcreteAggregates  SN   Ratioofappliedtensilestresstotensilestrengthofthematerial UCS  UnconfinedCompressiveStrength 2D   TwoDimensional 3D   ThreeDimensional

(18)
(19)



1





INTRODUCTION



 

he tremendous development of traffic both on roads and airfields in the last decades has resulted in a need of constructing pavements capable of bearingheavilyloadedvehiclestravellingathighspeedwhilstsubjectedto serious environmental and climatic conditions. New innovative concepts in the mixturedesignandevaluationofmaterials,inthestructuraldesignofpavements, in the construction techniques and in the maintenance of pavements, are thereforeencouragedtobepromotedandimplementedinpractice. 

Base/subͲbase courses play a very vital role in pavement structures by carrying wheelͲloads as well as withstanding environmental impacts. In the late 20th centurymuchinteresthasgrowninthetreatmentofroadbases/subͲbaseswith cement to obtain a high load spreading capacity in preference to unbound materials;and,progressively,awiderangeofnaturalmaterialstreatedbycement havebeenusedinpavementnetworksinmanycountries(Williams,1986).  The use of cement treated bases/subͲbases however can introduce some problems affecting the pavement’s serviceability, especially fatigue cracking and shrinkagecrackingstemmingfromtheirbrittlenature(Adaska&Luhr,2004).Asa result, overloading as well as severe climatic conditions can deteriorate the pavement performance during the service life, which can lead to high maintenance or reconstruction costs. In order to preserve the pavement with cement treated bases/subͲbases, pavement design and maintenance engineers need to know the performance of cement treated materials when used as base/subͲbase courses and the most appropriate methods for mitigating the disadvantages. 

The challenge to pavement engineers is therefore to comprehensively evaluate thestructuralperformanceofcementtreatedbases/subͲbasesinordertoobtain pavements which will have a considerable period of service life. Doing so, an importantrequiredprerequisiteistooptimizethemixtureofthecementtreated materials applied in road bases/subͲbases. Relevant performance evaluation modelsshouldbedevelopedforobtainingtherequiredpropertiesorsuggesting

T

(20)

structures.

1.1CEMENTTREATEDBASES/SUBͲBASES

1.1.1TypicalpavementdesignswithCTGrM

Figure1.1,Figure1.2andFigure1.3illustratethreetypesofpavementstructures

withcementtreatedgranularmaterials(CTGrM)(Molenaar,2005;Williams,1986).

Traditionally, road and airfield pavements are classified as being either ‘rigid’ or ‘flexible’.Herein,CTGrMisregardedasasemiͲrigidbasecourseforeitherflexible orrigidpavements.Itisdescribedasamixtureinwhicharelativelysmallamount of cement is used as a binder of coarse granular particles, and which needs an optimal amount of water for both compaction and cement hydration. It is wellͲknownthattreatmentofthebasewithcementisagoodoptiontoobtaina pavementstructurewithahighloadspreadingcapacity.



Concrete carriageway, or slab with joints

Cemented Base

Subbase

Compacted Subgrade

Uncompacted Subsoil Concrete carriageway, or slab with joints

CTGrM Sub-base Compacted Subgrade Uncompacted Subsoil       Figure1.1RigidpavementswithCTGrM             Figure1.2FlexiblepavementswithCTGrM Cemented Base Subbase Compacted Subgrade Uncompacted Subsoil Intermediate Asphalt Surface Course F lex ib le P a v e m e n t St ru ct u re Asphalt Surface Intermediate Asphalt CTGrM Sub-base Uncompacted Subsoil Compacted Subgrade Fl e x ib le Pa ve m en t

(21)



Figure1.3PavementswithCTGrMinSouthAfrica



1.1.2Granularmaterialsusedforcementtreatment

Over the past fifty years, an extensive range of granular materials has been treatedbycement.InareaslackinghighͲqualitynaturalaggregates,treatingother lowͲquality aggregates with cement is an excellent option since it significantly reduces the need to procure expensive highͲquality crushed aggregates from elsewhere. 

Because of environmental reasons, construction and demolition waste (CDW) is recycled in a number of countries and now promoted as sustainable road base/subͲbasematerial.Figure1.4showstheconcreteandmasonryrubbleata stockpileofaDutchrecyclingcompany.

     

Figure1.4Recycledconcreterubble(left)andmasonryrubble(right)

Each year billions of tons of CDW are produced in the world, which certainly causes environmental impacts due to the CDW dumping in landfills (Hansen,

Thin Surfacing layer

Granular/Cemented base

Cemented sub-base Equivalent granular

Granular selected layers

Granular sub-grade Thinsurfacinglayer Granular/CTGrM CTGrM Granularlayer Granularsubbase Equivalentgranular

(22)

successfully as unbound road base courses (Van Niekerk, 2002). Currently over 80% of the material used for road bases in the Netherlands are mix granulates withrecycledconcreteandmasonry(Molenaar,2005). 

As mentioned above, treatment of other lowͲquality material with cement is a good choice to solve the shortage of goodͲquality aggregates. The feasibility to reuse demolition waste as cement treated material is however not enough investigatedyet(Xuan,Houben,Molenaar,&Shui,2010;Xuan,Houben,Molenaar, &Shui,2012).Thiscanberemarkablesincetreatmentwithcementwouldallow meaningfulandeconomicalreuseofCDWascementtreatedbaseorsubͲbasein heavilyloadedpavements.

1.1.3TraditionalmixturedesignofCTGrM

The traditional mixture design of CTGrM is a laboratory approach, which mainly evaluates its mechanical properties to meet the requirements for structural pavementdesign(Kennedy,1983;NITRR,1986;Terrel,Epps,Barenberg,Mitchell, & Thompson, 1979). Figure 1.5 shows several stages in the traditional design of CTGrM.  Start Selectmaterialfor pavementlayer Iscementation suitable? Modificationby stabilizer No Or Determineoptimal moisturecontentand choosecementcontent Laboratorytests:

Unconfined compressive strength, indirect tensile strength and plasticity index(alsodurabilityifnecessary)  Comparisonwithdesigncriteria.Are resultssatisfactory?  Finish Yes No Yes  Figure1.5Stagesinthetraditionaldesignofcementtreatedroadbasematerials

(23)

NotethatthetraditionalmixturedesignofCTGrMisstronglydeterminedbythe

required minimum strength. Other structural properties of CTGrM are not

considered such as deformation and cracking behavior. The traditional mixture

designofCTGrMdoesnottakeintoaccountallfactorsaffectingtheperformance

ofpavementswhichhaveacementtreatedlayer.  

Furthermore, the problem with designing the CTGrM mixture and designing

pavementswithaCTGrMlayerforengineersisthelackofproceduresthatallow

its structural properties to be quickly estimated from mixture parameters like composition and characteristics of the granular particles to be stabilized. Such procedures do exist for asphalt and cement concrete and are very useful for designpurposes. 

1.2AIMANDSCOPEOFTHERESEARCH 

The general aim of this research is to develop estimation models which can predictthestrength,stiffnessanddeformationpropertiesofcementtreatedmix granulates with recycled concrete and masonry (CTMiGr) in relation to mixture variables. In particular, these models should allow to quickly design an optimal mixture for a real recycled material and consider all structural properties which areneededbyengineersforpavementdesign.

Toachievethisaimanextensiveresearchprogramwascarriedoutconsistingof thefollowingsteps: 

1) characterization of recycled materials and design of CTMiG mixtureswith differentcompositions; 

2) measurement of the structural properties of the designed mixtures and analysisoftheinfluenceofthemixturevariablesonthestructuralproperties; 

3) development of models to estimate the structural properties of CTMiGr frommixturecompositionparameters; 

4) determination of the mechanical properties of the individual components ofCTMiGrmixtures; 

5) numerical simulation of the fracture process of CTMiGr mixtures when takingintoaccountthepropertiesoftheindividualconstituentsandthevariation thereͲin. 

6)comprehensiveevaluationoftheinfluenceofthemixturevariablesonthe structural properties of CTMiGr and putting forward guidelines for mixture optimization.

(24)

experimental results will give an insight in the influence of different mixture

variablesonthestructuralpropertiesofCTMiGr.Aconceptualmixturedesignof

thismaterialisthenputforwardwhichisbasedontheexperimentaltestsandthe numerical analyses. A general overview of the research methodology is schematicallyshowninFigure1.6. Performance Models Model Verification Literature Review  Figure1.6Generaloverviewoftheresearchmethodology   1.3ORGANIZATIONOFTHEDISSERTATION

This dissertation is composed of nine chapters. Chapter 1 gives a brief introductiononcementtreatedgranularmaterialsandtheresearchdoneinthis study. It describes the importance of reusing the construction and demolition waste as granular materials and the importance of treating this material with cement.Italsostatestheimportancetodevelopestimationmodelsforpredicting the structural properties of cement treated demolition waste as demanded by pavementdesignengineersinpractice. 

Chapter2presentsaliteraturereview.Itdescribesthepresentknowledgeabout thebehaviorandcharacterizationofcementtreatedgranularmaterialsinrelation tomaterialvariables. 

(25)

Inchapter3therecycledmaterialsused,themixturedesignmethodconsidered andtheplannedexperimentaltestprogramarepresentedindetail.Theresearch strategyisfurtheraddressed. 

The properties of CTMiGr under compression as determined by monotonic and cyclic compressive tests are presented in chapter 4. This chapter also describes the modeling of the measured mechanical properties (unconfined compressive strength,staticanddynamicmodulusofelasticityandPoisson’sratio)inrelation tomixturevariables(cementcontent,degreeofcompaction,ratioofmasonryto concreteandcuringtime). 

In chapter 5 details of the test program carried out to determine the indirect tensile properties of CTMiGr are presented. The test results (indirect tensile strength and resilient modulus of elasticity) are correlated to the mixture variables mentioned above. General estimation models for compressive and indirect tensile properties are summarized and their correlations are further discussed. 

Inchapter6thedeformationbehaviorofCTMiGrispresented.Itsshrinkagecrack

pattern(initiationtimeofcracks,propagationofcrackspacinganddevelopment of crack width) when the material is used as a pavement layer is estimated by usingasimplifiedmechanisticmethod. 

In chapter 7 a numerical simulation of the fracture behavior is done by using a lattice model which uses characteristics of the individual components of CTMiGr asinput.Itisshownthatbymeansofthismodeltheeffectsoftheconsiderable variation in the mechanical properties and in composition of these materials as theyoccurinpracticecanwellbeestimated. 

Chapter8explainshowroadengineerscaninterpretandusethefindingsofthis

research for designing CTMiGr mixtures. Some guidelines relating material

propertiesandpavementdesignrequirementsaregiven.

Finally,chapter9presentstheconclusionsandrecommendations. 

REFERENCES

Adaska,W.S.,&Luhr,D.R.(2004).ControlofReflectiveCrackinginCementStabilized Pavements. Paper presented at the 5th International RILEM Conference, Limoges,France.

Hansen, T.C. (1992). Recycling of Demolished Concrete and Masonry: Report of Technical Committee 37ͲDRC, Demolition and Reuse of Concrete. (1st ed.).

(26)

Kennedy, J. (1983). CementͲbound Materials for SubͲbases and Roadbases (No. Publication46.027).Slough(UK):CementandConcreteAssociation 

Molenaar, A.A.A. (2005). Cohesive and NonͲcohesive Soils and Unbound Granular Materials for Bases and SubͲbases in Roads. The Netherlands, Delft: Delft UniversityofTechnology.

NITRR.(1986).CementitiousStabilizersinRoadConstruction(No.TRH13).Pretoria, South Africa: Committee of State Road Authorities, National Institute for TransportandRoadResearch.

Terrel,R.L.,Epps,J.A.,Barenberg,E.J.,Mitchell,J.K.,&Thompson,M.R.(1979).Soil Stabilization in Pavement Structures, a User’s ManualͲVolume 2: Mixture DesignConsiderations(No.FHWAͲIPͲ80Ͳ2).WashingtonD.C:FederalHighway Administration,DepartmentofTransportation.

Van Niekerk, A.A. (2002). Mechanical Behavior and Performance of Granular Bases andSubͲBasesinPavements.PhDThesis,DelftUniversityofTechnology,Delft, theNetherlands.

Williams, R.I.T. (1986). CementͲtreated Pavements: Materials, Design, and Construction.London:ElsevierAppliedSciencePublishers.

Xuan, D.X., Houben, L.J.M., Molenaar, A.A.A., & Shui, Z.H. (2010). Cement Treated Recycled Demolition Waste as a Road Base Material. Journal of Wuhan UniversityofTechnologyͲMaterialsScienceEdition,25(4),696Ͳ699.

Xuan, D.X., Houben, L.J.M., Molenaar, A.A.A., & Shui, Z.H. (2012). Mixture Optimization of Cement Treated Demolition Waste with Recycled Masonry andConcrete.MaterialsandStructures,45(1Ͳ2),143Ͳ151.



(27)



2

  LITERATUREREVIEW

  nmanycountriescementtreatedmaterialshavebeenwidelyappliedasroad baseand/orsubͲbase.Since1915,whenapavementinSarasota,Florida,was constructed and compacted by using a mixture of shells, sand and Portland cement,roadmaterialstreatedbycementvaryfromcoarseͲgrainedaggregates, recycled aggregates to fineͲgrained soils (Terrel, Epps, Barenberg, Mitchell, & Thompson, 1979a, 1979b). Figure 2.1 shows the ‘family’ of cement treated materials (Williams, 1986). In general coarse granular materials are the most appropriatematerialstobetreatedwithcement(Xuan,2009).

Cement treated materials

Soil-cement Cement treated granular

Material

Lean concrete Concrete

Non-bound material

Mix-in-place Stationary plant Dry-lean Wet-lean

Technology of soils with cylinders or cubes at field density and emphasis on 7-day strength. Essentially sub-base materials.

Technology of concrete with cubes compacted to refusal and emphasis on 28-day strength. Dry-lean is

essentially a roadbase material. 

Figure2.1  The‘family’ofcementtreatedmaterials(Williams,1986)

Cementtreatedgranularmaterials(CTGrM’s)aredefinedasmixturesinwhicha

relativelysmallamountofcementisusedasabinderofcoarsegranularparticles, and which need a proper water content for both compaction and cement hydration. Traditionally, CTGrM’s as road base materials are produced by using coarsenaturalorcrushedaggregates(Bell,1993).Duringthelastdecades,some recycling aggregates, such as recycled crushed concrete and recycled crushed masonry, have successfully been produced and used as construction materials (Hansen, 1992; Lim & Zollinger, 2003; Van Niekerk, 2002; Xuan, Houben,

I

(28)

ofcementismainlybecauseofthefollowingreasons(NITRR,1986):  y improvingtheworkability, 

y increasingthestrengthofthemixture,  y enhancingthedurability,and

y increasingtheloadspreadingcapacity 

Although CTGrM’s certainly have advantages to be used as base/subͲbase

materials, they still have some weaknesses stemming from material nature. Shrinkage and associated reflective cracking are well known problems of

pavementswithaCTGrMlayer.Furthermore,therepetitiveloadͲinducedfatigue

behavior and the degradation under environmental effects (wetͲdry and freezeͲthaw cycles) remain items of concern for pavement structures with a CTGrMlayer(ACI,1997;Adaska&Luhr,2004). 

As a result, a lot of consideration has been given by road engineers to properly design CTGrM mixtures. It is recognized that if the mixture design of CTGrM is carefully done and a proper construction procedure is followed, some disadvantages, such as shrinkage cracking and environmental impacts, can be limited and controlled. Moreover, by optimizing the mixture design the fatigue

behaviorofCTGrM’smaybeimproved.Inaddition,whenpayingproperattention

tothestructuralpropertiesofCTGrM,aroadpavementwithaCTGrMlayerdoes

not need to be maintained within a short period of time. The objective of this chapter is to review material factors that influence the structural properties of CTGrM’s.

2.1STRUCTURALREQUIREMENTSOFCTGrM’SASAPAVEMENTLAYER

Typical pavement structures with a semiͲrigid CTGrM layer are shown in Figures 1.1,1.2and1.3.Figures2.2and2.3indicatehowtheloadspreadingcapacityina twolayersystemcanbeinfluencedbythepropertiesoftwolayers.Astiffbottom layer, resulting in a low E1/E2 ratio dramatically reduces the horizontal tensile stressesatthebottomofthetoplayer.Thiscanbehelpfultopreventthedamage ofthetoplayerduetobending.Meanwhile,whenastiffbottomlayerisapplied, the vertical stresses at its top greatly increase. The bottom layer then plays an importantroleincarryingheavywheelͲloads. 

(29)

 Figure2.2Distributionofthehorizontalstressesinatwolayersystemunderthe centreoftheload(Poisson’sratioequals0.25)   Figure2.3Distributionoftheverticalstressesinatwolayersystemunderthe centreoftheload(Poisson’sratioequals0.25)

Table 2.1 gives a review of different pavement design methods as well as the

designcriteriaforpavementswithaCTGrMlayer(Molenaar,Houben,&Huurman,

2006). It shows that much attention is always paid to the elastic modulus, the occurringmaximumflexuraltensilestrain,thestrainatbreakandthefatigueat

thebottomoftheCTGrMlayer. 

(30)

Method AnalyticalͲempiricalbynature;StressesandstrainscalculatedwithlinearͲelasticmultiͲlayer program. SAMDM (South African) Criteria 1)ModulusgivenasafunctionofpreͲcrackconditionand postͲcrackcondition; 2)MaximumflexuraltensilestrainatthebottomofCTGrM; 3)MaximumverticalcompressivestressatthetopofCTGrM; 4)Fatiguerelatedtotheratiooftheflexuraltensilestraintothe strainatbreak. Method MechanisticͲempiricaldesignmethod; StressesandstrainsfromstructuralanalysiswithlinearͲelastic multiͲlayerprogram; Developmentofdamagebasedonempiricaltransferfunctions. AASHTO (USA) Criteria 1)Uniaxialcompressionstrength>compressionstrength; 2)Uniaxialcompressionmodulus>Young’smodulusE; 3)4Ͳpointbendingstrength>flexuralstrength; 4)FatigueinCTGrMbase; 5)CrushingofCTGrMbase. Method StressesandstrainscalculatedwithlinearͲelasticmultiͲlayer program; Probabilisticapproachforthelayerthicknesses,theYoung’s modulusandthefatigueofCTGrM. French Design Manual (France)

Criteria 1)MaximumflexuraltensilestrainatthebottomofCTG2)FatiguerelationshipofCTG rM;

rM

Method LinearͲelasticmultiͲlayerprogram; ESSO

MOEBIUS

(Belgium) Criteria 1)FatigueIndexforexperimentalfatigueofCTGadjustmentfactor; rMwithafield 2)Stressesandstrainsduetothetrafficloadandtemperature. Method StressesandstrainscalculatedwithlinearͲelasticmultiͲlayerprogram; BOUNDBASE

(The

Netherlands) Criteria 1)Fatigueatthebottomofthebase; 2)Onecyclebrittleflexuralfailureatthebottomofthebase; 3)Flexuraltensilestrainatbreakandflexuraltensilestrength. Method StressesandstrainscalculatedwithlinearͲelasticmultiͲlayerprogram; CROW  (The Netherlands) Criteria 1)MaximumflexuraltensilestrainatthebottomofCTGrM layer; 2)MaximumverticalcompressivestressatthetopofCTGrM layer. Method Stressesandstrainscalculated; ECOͲSERVE 

(European) Criteria 1)MaximumflexuraltensilestrainatthebottomofCTGlayer; rM 2)MaximumverticalcompressivestressatthetopofCTGrM

(31)

2.2MATERIALSANDTRADITIONALMIXTUREDESIGNOFCTGrM  

2.2.1Materialssuitablefortreatmentwithcement 

Although it is possible to treat almost any material with cement to improve its properties, it is difficult to treat fine, clayey materials due to the high cement content required and the difficulty of pulverizing the soil and mixing it with cement homogeneously. For stabilization of fine clayed materials, lime is suggested to be a better stabilizing agent (NITRR, 1986). Thus, the question whetherornotamaterialissuitableforcementtreatmentisanimportantone. The answer to some extent is given in Table 2.2, Table 2.3 and Figure 2.4 (Molenaar, 1998). The effect of cement treatment depends on the particle size and the type of material. Stabilization of clays and silts with only cement is not verysuccessful.Thatisthereasonwhyinsomecasesadoubletreatmentisused, which implies first of all modification of the soil with lime and after that treatmentofthesoilͲlimemixturewithcement.Figure2.4showsdifferenttypes ofstabilizationwithlimeandcement. 

Table2.2Stabilizingmodesofsoils

Designation claysFine Coarseclays Finesilts Coarsesilts sandsFine Coarsesand Aggregate Particlesize

(mm) <0.0006 0.0006Ͳ0.002 0.002Ͳ0.01 0.01Ͳ0.06 0.06Ͳ0.4 0.4Ͳ2.0 >2.0 Volume

stability VeryPoor Fair Fair Good Very  Good

Lime   Cement   Stabilizing  agent  Bitumen     

  Rangeofmaximumefficiency  Effective,butqualitycontrolisdifficult

Table2.3Effectsofcementonsoilcharacteristics

Changesoilproperties

Type Primary

mechanisms  Bestsuited LL PL PI Limitations

Increase Strength Hydration, modificationof clayminerals Coarseand sandsoilsor leanclays Slight

reduction Increase Decrease

Organic soils Improve Plasticity Modificationof clay,change waterfilm Improve existingroad clays

Varies Increase Decrease

Low strength increase 

(32)

 Figure2.4Limeandcementstabilizations

As a result of cement treatment, the terms “modification” and “cementation” may be used to demonstrate the degree of treatment. When the addition of cementtoamaterialresultsinareductioninplasticity,butthereisnosignificant developmentofcompressiveandtensilestrength,thischangeinsoilpropertiesis referred to as “modification”. In such cases the degree of cementation is relativelypoor,buttheworkabilityofamaterialcanconsiderablybeimprovedin this way. When the tensile and compressive strength of the material is greatly improved,thisbehaviorcanberegardedasaresultof“cementation”.However, thereisnoclearlydefinedboundarybetweencementationandmodification.The onestatemergesintotheother(NITRR,1986).

On basis of experience and research extending over years, some general guidelineshavebeenprovidedregardingtheamountsofcementthatareneeded totreatamaterial.AnexampleisgiveninTable2.4wheretheamountofcement tobeusedisrelatedtotheclassificationofasoilfollowingtheAASHO(American Association of State Highway Officials) and USCS (Unified Soil Classification System)soilclassificationsystems(Molenaar,1998;Xuan,2009). 

Table2.4Amountofcementfordifferentsoils

SoilType Cement(%)

AASHO USCS By

weight By volume Estimatedcement content,usedin moistureͲdensity test(%byweight) Cementcontents forwetͲdryand freezeͲthawtests (%byweight) AͲ1Ͳa GW,GP,GM, SW,SP,SM 3Ͳ5 5Ͳ7 5 3Ͳ5Ͳ7 AͲ1Ͳb GM,GP,SM,SP 5Ͳ8 7Ͳ9 6 4Ͳ6Ͳ8 AͲ2 GM,GC,SM,SC 5Ͳ9 7Ͳ10 7 5Ͳ7Ͳ9 AͲ3 SP 7Ͳ11 8Ͳ12 9 7Ͳ9Ͳ11 AͲ4 CL,ML 7Ͳ12 8Ͳ13 10 8Ͳ10Ͳ12 AͲ5 ML,MH,CH 8Ͳ13 8Ͳ13 10 8Ͳ10Ͳ12 AͲ6 CL,CH 9Ͳ15 10Ͳ14 12 10Ͳ12Ͳ14 AͲ7 OH,MH,CH 10Ͳ16 10Ͳ14 13 11Ͳ13Ͳ15 UCS=UnconfinedCompressiveStrength

Soil ModifiedSoil CementedSoil Leanmix Concrete

Lime

UCS<750kPa(approx.) UCS>750kPa(approx.)

(33)

A material is regarded to be suited for treatment with cement if its physical parametersmeetthevalueslistedinTable2.5(Molenaar,1998).  Table2.5Materialssuitablefortreatmentwithcement Items  Index %ч0.075mm  <35% Maximumgrainsize(mm) <75 LL <50 PL <25 PI <6 2.2.2Requirementsoftreatedgranularmaterials 

CTGrM as a road base material is traditionally produced by using natural or crushed aggregates as the main component. The amount of aggregates in the mixtureisnormallyover80percentbymass.Therefore,thephysicalpropertiesof thegranularaggregatesareveryimportantandwillaffectthemixturedesignof CTGrManditsproperties. 2.2.2.1Gradingcurvesofgranulates Differentnationalspecificationsforthegradationofgranularmaterialshavebeen developedinordertoachieveagoodmechanicalstabilization.WithwellͲgraded materials the void content can be reduced by compaction, and in this way the granulate arrangement and the stability of the material under loading improve. This can only happen to a limited extent with poorlyͲgraded materials; their stability can be improved by adding another material to fill the voids between particles.Allthesemeanthatthegradingofthegranularmaterialsisimportantto ensurethemechanicalstability. 

Figure 2.5 illustrates the required gradations for road base materials as taken fromtheSpecificationforHighwayWorksintheUK(DT,1991).Cementtreated materials are traditionally categorized into three groups known as soilͲcement,

CTGrMandleanconcrete,respectively.Thegradingcurvesofroadbasematerials

from the Specification for Highway Works in the UK are thus referring to these threetypes.Thegradationofcementboundmaterial3(CBM3)likeleanconcrete isdesignedbyusinghighqualitycoarseaggregates.MaterialsmeetingCBM3also complywithCBM2andCBM1.Similarlymaterialswhichfulfilltherequirementsof CBM2 automatically fulfill the requirements of CBM1. In practice, the grading

(34)

Particl esize(mm) Su m m a ti o n pe rc e n ta g e (% ) P erc e n ta ge pa ss in g ( % ) Pe rc en ta ge pa ss in g (% )  Figure2.5GradingcurvesofcementtreatedmaterialsintheUK(DT,1991) Required gradations for CTGrM in South Africa, China and the Netherlands are showninFigure2.6(JTJ034,2000;Molenaar,1998,2005).InSouth Africathere are four classes of cemented materials for crushed stone, crushed gravel and natural gravel, namely C1, C2, C3 and C4. The grading curves of CTGrM in the Chinese specifications generally consider the maximum aggregate size and the materialtypefordifferentroadbasesandsubͲbases.IntheDutchSpecifications for base course materials, the gradation of recycled aggregates such as blast furnaceslag,crushedmasonryandcrushedconcreteisclearlydefined.  0 20 40 60 80 100 0.01 0.1 1 10 100 Sievesize(mm) Pe rc en ta ge p assi ng (% ) Fuller'sEquationn=0,45 ChineseUpperlimit(UL,31,5) ChineseLowerlimit(LL,31,5) SouthAfricaUL(37,5mm) SouthAfricaLL(37,5mm) Dutchbase(UL,45mm) Dutchbase(LL,45mm) ChineseUpperlimit(UL,37,5) ChineseUpperlimit(UL,37,5)  Figure2.6SomegradingenvelopesforCTGrM’sinseveralcountries

(35)

Figure2.7showssomegradationsinrelationtothewaythematerialisusedin practice (Molenaar, 1998). Some remarks can be made with respect to those gradations:

z the grainͲsize distribution of CTGrM should be continuous for obtaining a goodmechanicalstability; 

z a certain amount of fines is always needed for mixture stability.

Furthermore,thefinesshouldhavecertainplasticitycharacteristicsinorder toactasabinderthatkeepsthecoarseparticlestogether; 

z by increasing the maximum grain size of particles, the load spreading

capacityofCTGrMcanincrease.   Figure2.7Gradationsofgranularmaterialsinrelationtotheiruse 2.2.2.2Physicalpropertiesofgranularmaterials  Withregardtothephysicalrequirementsforgranularmaterials,muchattention isalwayspaidtotheplasticityindex(PI)andtheaggregatecrushingvalue(ACV). The PI is considered to determine whether or not the material needs to be treatedwithlime.TheACVrequirementisincludedforobtainingamechanically stable mixture. Table 2.6 and Table 2.7 show the physical requirements for aggregates treated by cement in South Africa and China, respectively (JTJ034, 2000;Sherwood,1995) 

Table2.6PhysicalrequirementsformaterialsinSouthAfrica

Items  C1 C2 C3 C4

PI(%) <6 <6 <6 <6

ACV(%) <29 <29 n/a n/a

(36)

base/subͲbasesinChina

CementtreatedsubͲbase  Cementtreatedbase  Physical

properties Soils Crushed stone Natural gravel Soils Crushed stone Natural gravel PI(%) <12 <6(or9*) <6(or9*) <9 <6(or9*) <6(or9*) ACV(%) <30 <30 <30 <30 <26 <30

*ThevalueofPIis6inwetregionsand9inotherregions. 

Basedontheinformationgivenabove,itcanbeconcludedthatthemostsuitable

granularmaterialstobeusedasCTGrMbases/subͲbasesshouldmeetsomebasic

requirements such as a continuous grading, a low PI and a proper aggregate crushingstrength.  2.2.3Traditionalmixturedesign Afterobtainingthesuitableaggregates,thetraditionalmixturedesignprocedure forCTGrMismoreorlessasfollows: 1) selecttherangeofthepreliminarycementcontentbymassorbyvolume; thisisgenerallydeterminedbythematerialtypeshowninTable2.4; 

2) use the estimated cement content obtained in step 1 to conduct moistureͲdensitytesting; 

3) prepare specimens by using the maximum dry density and optimum moisturecontentobtainedfromstep2; 

4) determine the average compressive strength of specimens after the specified curing time. If the strength requirements are fulfilled, the cement content and the water content determined in step 2 are adequate for the constructionoftheCTGrMlayer. 

Table2.8liststherequiredunconfinedcompressivestrength(UCS)forCTGrMin

different countries (JTJ034, 2000; Molenaar, 1998; NITRR, 1986). Note that the requiredUCSstronglydependsonthematerialtypeandtheroadclass.Inorder

toobtainagoodUCSinthefield,CTGrMshouldbecompactedto97%Modified

AASHTO Proctor density. Therefore, the designed UCS of CTGrM is normally

specified at 97% Modified AASHTO Proctor density in the laboratory. Since it is easy to compact samples to 100% Modified AASHTO Proctor density in the laboratory, some countries, like in South Africa, also specify the design UCS of

CTGrMat100%ModifiedAASHTOProctordensity.ThentheUCSat97%Modified

(37)

Table2.8RequirementsfortheUCSofCTGrM

Country Compaction Unconfinedcompressive

strengthat7days(MPa) C1 C2 100%modifiedAASHTO compaction 6Ͳ12 3Ͳ6 South Africa 97%  modifiedAASHTO compaction 4Ͳ8 2Ͳ4 CBM1 CBM2 United Kingdom 97%  modifiedAASHTO compaction 2.5Ͳ4.5 4.5Ͳ7.5 Base SubͲbase   China 97%  modifiedAASHTO compaction >4 >2 Note:1)C1andC2aredesignatedintheSouthAfricanspecification.  2)CBM1andCBM2areclassifiedonbasisofgradationintheBritishspecification

However, in practice optimum moisture content and maximum dry density can not always be found for some coarse materials. This might influence the preparation of CTGrM. Moreover, the traditional mixture design of CTGrM is strongly determined by the required minimum compressive strength. Other structural properties of CTGrM are not considered. Thus, the traditional mixture

designofCTGrMhasitslimitationswhenitcomestousetheresultsofthetests

donefordesigningtheCTGrMmixtureforpavementperformanceevaluation.The

problemwithdesigningaCTGrMmixtureanddesigningpavementswithaCTGrM

layer is the lack of procedures that allow its mechanical properties to be estimated from mixture parameters like component proportions and characteristics of the granular particles to be treated. Such procedures do exist for asphalt and cement concrete and are very useful for pavement design purposes. 

2.3TYPICALSTRUCTURALPROPERTIESOFCTGrM

The mechanical strength of CTGrM comes from the coupled contribution of the compacted granular skeleton and cement hydration. The former strongly

determinesthemechanicalstabilityofCTGrMunderloading.Thelatterinfluences

thebondingstrengthbetweentheparticles.Byobservingthematerialstructure shown in Figure 2.8, it has been found that the aggregate structure is mainly governedbythetypeofaggregate,itsgradationandthedegreeofcompaction. The bonding phase or matrix is controlled by the cement content, the fines content,themoisturecontent,thecuringtime,curingconditionandsoon.Figure 2.8alsoshowstheinfluenceofdifferentfactorsonthemechanicalpropertiesof CTGrM. 

(38)



Figure2.8InfluencefactorsonthemechanicalpropertiesofCTGrM



2.3.1Unconfinedcompressivestrength

It is generally accepted that the unconfined compressive strength (UCS) is an important indicator of the material quality of CTGrM.  A number of material factors influence the UCS such as the cement content, the material type, the degreeofcompaction,thecuringtime,thecuringconditionandsoon. 

2.3.1.1Influenceofcementcontent

ItiswellknownthatcementusedinCTGrMplaysanimportantroleinimproving

thecohesivenessofthetreatedmaterialanditsmechanicalproperties.Figure2.9 showstheinfluenceofthecementcontentontheUCSofacementtreatedgravel. A linear relationship is found between the UCS and the cement content. This phenomenonisobservedformostofthegranularmaterials(Bell,1993;BS6031, 1981;Kennedy,1983;NITRR,1986).   Figure2.9InfluenceofcementcontentonUCS(Sherwood,1968) Material Type Gradation

Void or compaction degree

Structural factors Bonding factors

Cement content Cement type Moisture content Curing time Curing condition External conditions

Void content or degree of compaction

(39)

2.3.1.2Influenceofcementtype 

Several types of cement have successfully been applied in cement treated materials. The influence of the cement type has been investigated by some researchers(Babic,1987;NITRR1986).Figure2.10illustratestheinfluenceoftwo types of cement, ordinary Portland cement (OPC) and Portland blast furnace cement (PBFC), on the strength development. The UCS of cement treated sand increaseslinearlywiththeincreaseoftheOPCcontent,whichisnotthecasefor thesandwithPBFC.After28curingdays,thesandtreatedwithahighcontentof PBFCshowsahigherstrengththanthesandtreatedwithOPC.  0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 0 2 4 6 8 10 12 14 Cementcontent(%) UC S (MP a ) 1day 2days 4days 7days 28days 56days 14days 112days 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 0 2 4 6 8 10 12 14 Cementcontent(%) UC S (M P a ) 1day 2days 4days 7days 14days 28days                      (a)OPC                             (b)PBFC Figure2.10InfluenceofthecementtypeontheUCSofcementtreatedsand (NITRR,1986) 2.3.1.3Influenceofmaterialtype 

The linear relationship shown in Figure 2.9 is valid for one specific type of aggregate and a given grading. It means that other physical properties are not considered,suchasmineralogy,aggregatestrength,gradationand soon(Davis, Warr,Burns,&Hoppe,2007;Kolias&Williams,1984).Figure2.11andFigure2.12 showtheinfluenceoftheaggregatetypeandthefinescontent(particlessmaller than 0.075 mm) on the UCS. It is found that the aggregate size influences the linear relationship between the UCS and the cement content. There is a

significantdifferenceinstrengthforfourtypesofCTGrMaggregates,inorderof

increasing strength: mica, limestone, diabase/granite. The order of diabase/granitedependsonthefinesfractionorthegradingcurve. 

(40)

 Figure2.11InfluenceofmaterialtypeandcementcontentontheUCSat28days (Bell,1993)  0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 Mi ca Di ab as e Limes to n e Gr an it e Mi ca Di ab as e Limes to n e Gr an it e Mi ca Di ab as e Limes to n e Gr an it e Mi ca Di ab as e Limes to n e Gr an it e

Fine 4% Fine 7% Fine 10% Fine 14%

f c (M P a )

cement 3% cement 4% cement 5% cement 6%

7-da y U C S ( M P a)  Figure2.12Influenceofaggregatetypeonthe7ͲdayUCS(datafrom(Davis,etal., 2007)) 2.3.1.4Influenceofdegreeofcompaction TheeffectofthedrydensityaftercompactionontheUCShasbeenstudied,andit hasbeenfoundthattheUCSincreaseswithanincreaseofthedrydensityorthe degree of compaction (Kolias & Williams, 1984; Sherwood, 1995). Figure 2.13 showssomeresultsfortwomaterials. 

(41)

 Figure2.13Relationshipsbetweenthe7ͲdayUCSandthedrydensityfortwo

CTGrMs(Sherwood,1995)

It can be observed that if the relation between the UCS and the dry density is plottedonalogͲlogscale,therelationbetweenthemisbasicallylinearandmay thereforebeexpressedasapowerlaw: 

 log(UCS) logK nlogD                       (2.1)

 or n

D k

UCS ˜                            (2.2) Where,DisthedrydensityoftheCTGrMspecimen(kg/m3);Kisaconstant;nisa dimensionlessconstant

The value of n is a function of the moisture content and decreases with the increaseofthemoisturecontent.ThenͲvalueis7Ͳ15and11Ͳ22,respectively,for porphyry and asͲdug gravel. On average, a one percent increase in dry density yieldsa10percentincreaseinstrength. 

InpracticethemixturedrydensityofCTGrMstronglydependsonthedegreeof

compaction. With the increase of the degree of compaction, the corresponding drydensityandstrengthwillincrease,regardlessofthematerialtype.Thatisone

ofthereasonsthatthestrengthrequirementsforCTGrMgenerallyassumethata

high degree of compaction is achieved. This is also based on the fact that although a low dry density may be compensated by increasing the cement content, it is generally more economical to achieve a high strength through a goodcompaction.

(42)

Thecuringtimeisanotherimportantfactoraffectingthestrengthdevelopmentof

CTGrM.AnumberofresearchershavereporteditsinfluenceontheUCS(DT,1991;

Moore, Kennedy, & Hudson, 1970; NITRR, 1986; Sherwood, 1995). The strength developmentwiththecuringtimeisshowninFigure2.14.Itcanbeobservedthat theUCSincreasesapproximatelylinearlywiththelogofthecuringtime.  0 2 4 6 8 10 12 Curingdays Co m pre ss iv e str en g th (M Pa ) 7%Sample1 5%Sample1 3%Sample1 5%Sample2 5%sample3 123728365 WellͲgradedsand 0 2 4 6 8 10 12 Curingdays Co m pre ss iv e st re ng th (M P a ) 7%Sample1 5%Sample1 3%Sample1 5%Sample2 5%sample3 123728365 Gravel  Figure2.14Relationshipsbetweencompressivestrengthandcuringperiod(NITRR, 1986)

The relationship between the UCS and the curing time for a given material and cementcanthereforebegivenby: ) / log( ) ( ) (t UCS t0 k t t0 UCS  ˜                 (2.3)

Where, UCS(t)is the UCS at curing age of t days; UCS(t0)is the UCS at curing ageoft0days

Therealsoexistothermodelstopredicttheinfluenceofthecuringtime,andone of them was proposed by (Lim & Zollinger, 2003). The model from Lim resulted fromacalibrationoftheACICommitteemodelwhichisgivenbyEquation2.4and resultedinanewsetofcoefficientsofa=2.5andb=0.9:   t b a t UCS t UCS t UCS c ˜  ˜ ˜ (28) ) 28 ( ) ( E˄˅           (2.4)

Where, ɴc(t) = the coefficient which depends on age t (days) and cement type; UCS(28)isthereference28ͲdayUCSanda,bareexperimentalcoefficients. 

(43)

2.3.1.6Influenceofcuringconditions

ThepropertiesofCTGrMinthelaboratorydifferfromthosemeasuredinthefield,

which is particularly due to different curing conditions. For example, a high temperature may result in early strength formation. Figure 2.15 shows the influence of the curing temperature. The UCS increases as the temperature increases. This effect may be used to develop accelerated test methods, i.e. curingathightemperaturetogetanearlyindicationofthelongͲtermstrength. 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 0 20 40 60 80 100 Curingtemperature(ć) UC S (M P a) Normalcuringtemperature       Figure2.15RelationshipsbetweenUCSat7daysandcuringtemperature (NITRR,1986) 2.3.1.7EstimationmodelsofUCSforCTGrMandconcrete  Fromtheinformationgivenaboveandusingknowledgeinconcretetechnology, Table 2.9 is derived in which existing models to predict the UCS of CTGrM and concrete from mixture parameters are listed. When comparing the models for

CTGrMandconcrete,somesimilaritiescanbefound.Tosomeextent,CTGrMcan beregardedasaleanconcreteͲtypeofmaterial.       

(44)

Material PredictionmodelsofUCS Reference Remarks C A UCS u  (Sherwood, 1968) C=cementby mass; n D K UCS u  (Sherwood, 1995) D=density 32 . 3 28 . 0 4 ] ) ( [ 10 03 . 5 u  V C UCS K  (Consoli,Foppa, Festugato,& Heineck,2007) Cv=cementby volume ɻ=porosity ) / log( ) ( ) (t UCS t0 k t t0 UCS  ˜  (Terrel,etal., 1979a) CTGrM t b a t UCS t UCS ˜  ) 28 ( ) (  (Lim& Zollinger,2003) t=curingtime ) 5 . 0 ( 6 . 24  W C UCS        W C UCS 147˜0.0779 / 

(Larrard,1999) W=waterbymass

n c UCS UCS ,0(1K)  K ˜  ˜ k c e UCS UCS ,0  ) ln( 0 K K ˜ k UCS  K ˜ k UCS UCS c 0,  (Kearsley& Wainwright, 2002) UCSc,0isat0% porosity ¿ ¾ ½ ¯ ® ­ »¼ º «¬ ª  ˜ 1 ) 28 ( 1 exp ) 28 ( ) ( k t s UCS t UCS (EN199Ͳ1Ͳ1, 2005) Concrete t b a t UCS t UCS ˜  ˜ ) 28 ( ) (  (ACI,1998)  Furthermore,thereisevidencethatitshouldbefeasibletoestablishaprediction

model for the UCS of CTGrM based on the material parameters mentioned in

Table2.9.Suchrelationshipsalreadyexistforcementconcrete.

2.3.2Tensilestrength 

The tensile strength of CTGrM is always considered as a significant material propertyfordesigningpavementstructures.Thisisbecausethetensilestressat the bottom of the CTGrM layer is quite often taken as a design criterion. In general, flexural beam tests, direct tensile tests and indirect tensile tests have

(45)

beenemployedtoevaluatethetensilestrengthofCTGrM.Valuesdeducedfrom thesetestsdifferfromeachotherduetothedifferentstressdistribution. 

2.3.2.1Directtensilestrength

Figure2.16showstheinfluenceofthematerialtypeontherelationbetweenthe direct tensile strength (DTS) and the UCS. One can observe that their strength ratioistosomeextentdependentonthematerialtype.However,atlowstrength levels, theDTS is typically aboutoneͲtenth of the UCS. Similar results were also reportedforcementtreatedcrushedstonebyBalboanditcanbe expressedas (Balbo,1997): 

UCS

DTS 100. ˜                        (2.5) Although the limited number of tests could not allow a firm conclusion to be drawn,theyimpliedthattheaggregatetypeisnotaprimaryfactorintherelation betweenDTSandUCS. 

 Figure2.16DTSplottedagainstUCS(Williams,1986) 2.3.2.2Flexuraltensilestrength

It has been shown by some researchers that the flexural tensile strength (ff) of CTGrM is about 1/10 to 1/6 of the UCS (Kolias & Williams, 1984; NITRR, 1986; Terrel,etal.,1979b).ForlowͲstrengthmixturestheratiooffftoUCSislarger(up to 1/6) than that of highͲstrength mixtures (down to less than 1/10). With

increasingparticlesizetheratiooffftoUCSdecreasesmoreorlessfrom1/6to

1/10.TestdataforsomeCTGrMsareshowninFigure2.17.Thefigureshowsthat

the aggregate type determines ff to some extent. A linear relationship between themisgenerallygivenby: 

(46)

Where,aistheexperimentallydeterminedratiobetweenfftoUCS.  Figure2.17FlexuraltensilestrengthplottedagainsttheUCS(Kolias&Williams, 1984) Regardlessofthematerialtype,however,agoodapproximationfortheflexural strengthonbasisofdataabovecouldbedeveloped(Equation2.7).Thisshows thatapowerrelationbetweenffandUCScanfitalldatawell.  75 . 0 25 . 0 UCS ff ˜         (R2=0.93)         (2.7) 2.3.2.3Indirecttensilestrength

As reported before, relations between the UCS and the indirect tensile strength (ITS) are also established (Kolias & Williams, 1980; Molenaar, 2007; Williams, 1962).Twolinearmodelsaregiven:   b UCS a ITS ˜                             (2.8)                ITS aUCS                            (2.9) Where,a,a’andbarecoefficientsdependingonmaterialparameters. 

Based on Babic’s results, the following conclusions can be drawn (Babic, 1987). ThetypeofcementdoesnotappeartoaffecttherelationbetweenUCSandITSto alargeextent.Thegradationofthegranularmaterialhaspracticallynoinfluence

Cytaty

Powiązane dokumenty

W obu tom ach najw ięcej m iejsca poświęcono zagadnieniom Bliskiego Wschodu (Półwysep Bałkański, Wyspy Jońskie, Turcja, a zwłaszcza jej posiadłości

Time-resolved Imaging of Secondary Gamma Ray Emissions for in vivo Monitoring of Proton Therapy: Methodological and Experimental Feasibility

M ur zam ykający badane w nętrze od północy m iał na głębokości piw nicy półokrągły wylot, obudowany cegłami; otw ór w ypełniała .sczerniała od ognia

Среди местных деятелей крестьянских организаций — крестьян наиболее политически сознательных — выступали отчетливо антицарские настроения, но только

Ce qui im p orte dans cette production historique, c’est l ’abondance des éditions de sources, qui u tilisen t entre autres des m atériaux de grande im portance

D ążenie do określenia granic działania państw a, zapew nienia bezpieczeństwa i ochrany w łasności, w prow adzenia „w olności w obrocie cyw iln ym ”, oparcie

ujęcie tematologiczne (do rozważań badacza odniosę się w dalszej części artykułu), a jed-.. nocześnie potwierdza, że problem wiersza jesiennego nie wyczerpuje się w badaniach nad

Najważniejsze z nich to: obwarowanie figury ojca odpowiedzialnością (Łosjew); przedstawienie postaci Onufriewa jako żonatego i bohaterskiego (choć tylko do czasu) „ojca”