• Nie Znaleziono Wyników

Tanker longitudinal strength analysis users manual and computer program

N/A
N/A
Protected

Academic year: 2021

Share "Tanker longitudinal strength analysis users manual and computer program"

Copied!
18
0
0

Pełen tekst

(1)

This document has been approved

for public release and sale

its

distribution is unlimited.

SSC-226

SHIP STRUCTURE COMMITTEE

972

TANKER LONGITUDINAL STRENGTH ANALYSIS

(2)

SHIP STRUCTURE COMMITTEE

AN INTERAGENCY ADVISORY

COMMITTEE DEDICATED TO IMPROVING

THE STRUCTURE OF SHIPS

S R-196

1972

Dear Sir:

One of the most important goals of the Ship Structure

Committee is the improvement of methods for design and analysis

of ship hull structures.

This report is the second in a sequence

of four Ship Structure Committee reports on a project directed

toward development of an accurate, but less expensive, computer

aided structural analysis method.

This report contains the User's Manual and computer

pro-gram for the longitudinal strength analysis portion of the

program.

Other reports of this project are:

SSC-225 - Structural Analysis of Longitudinally

Framed Ships

SSC-227 - Tanker Transverse Strength

Analysis--User's Manual

SSC-228 - Tanker Transverse Strength

Analysis--Programmer's Manual

Comments on this report would be welcomed.

Sincerely,

W. F. REA, III

Rear Admiral, U.

S. Coast Guard

Chairman, Ship Structure Committee

MEMBER AGENCIES:

ADDRESS CORRESPONDENCE TO:

UNITED STATES COAST GUARD

SECRETARY

NAVAL SHIP SYSTEMS COMMAND SHiP STRUCTURE COMMITTEE

MILITARY SEALIFT COMMAND U.S. COAST GUARD HEADQUARTERS

MARITIME ADMINISTRATION WASHINGTON. D.C. 20591

(3)

SSC -2 26

Final Report

on

Project SR-196,

Computer Design of

Longitudinally Framed Ships'

to the

Ship Structure Committee

TANKER LONGITUDINAL STRENGTH ANALYSIS

USER'S MANUAL AND COMPUTER PROGRAM

by

R. Nielson, P. Y. Chang, and L. C. Deschamps

CON/CODE Corporation

under

Department of the Navy

Naval Ship Engineering Center

Contract No. N00024-70-C-5219

This document has been approved for public release and

sale, its distribution is unlimited.

U. S. Coast Guard Headquarters

Washington, D. C.

1972

SSc-'22 é

Biblioheek van de

Onderfde!inci derScheepsbouwkunde

Technische Hogeschoo!, Det

DOCUMEN ÏAUE

(4)

ABSTRACT

This report, the second in a sequence of four Ship Structure

Committee Reports on a method for performing structural analysis

of a tanker hull, contains the User's Manual and Computer

Pro-gram for the longitudinal strength analysis portion of the

program.

(5)

CONTENTS

Page

INPUT

i

OUTPUT

4

EXAMPLE

4

FLOW CHART

6

FORTRAN LISTING

7

(6)

The SHIP STRUCTURE COMMITTEE is constituted to prosecute a research

program to improve

the hull structures of ships by an

extension of

knowledge

pertaining to design, materials and methods of fabrication.

RADM W. F. Rea, III, USCG, Chairman

Chief, Office of Merchant Marine Safety

U. S. Coast Guard Headquarters

Capt. J. E. Rasmussen, USN

Head, Ship Systems Engineering

and Design Department

Naval Ship Engineering Center

Naval Ship Systems Command

Mr.

K. Morland, Vice President

American Bureau of Shipping

U. S. COAST GUARD

LCDR C. S. Loosmore, USCG - Secretary

CAPT C.

R. Thompson, USCG - Member

CDR J. W. Kime, USCG - Alternate

CDR J. L. Coburn, USCG - Alternate

MARITIME ADMINISTRATION

Mr. F. Dashnaw - Member

Mr. A. Maillar - Member

Mr. R. Falls - Alternate

Mr. R.

F. Coombs - Alternate

MILITARY SEALIFT COMMAND

Mr. R. R. Askren - Member

LTJG E. T. Powers, USNR - Member

SHIP STRUCTURE COMMITTEE

SHIP STRUCTURE SUBCOMMITTEE

The SHIP STRUCTURE SUBCOMMITTEE acts for the Ship Structure Committee

on technical matters by providing technical coordination for the determination of

goals and objectives of the program, and by evaluating and

interpreting

the

re-sults in terms of ship structural design, construction and operation.

NAVAL SHIP ENGINEERING CENTER

OFFICE OF NAVAL RESEARCH

Mr. P. M. Palermo - Chairman

Mr. J. M. Crowley - Member

Mr. J. B. O'Brien - Contract Administrator

Dr. W. G. Rauch - Alternate

Mr. G. Sorkin - Member

Mr. H. S. Sayre - Alternate

NAVAL SHIP RESEARCH & DEVELOPMENT

Mr. I. Fioriti - Alternate

CENTER

Mr. E. S. Dillon

Chief

Offlce of Ship Construction

Maritime Administration

Capt. L. L. Jackson, USN

Maintenance and Repair Officer

Military Sealift Command

Mr. A. B. Stavovy - Alternate

NATIONAL ACADEMY OF SCIENCES

-Ship Research Committee

Mr. R. W. Rumke, Liaison

Prof. R. A. Yagle, Liaison

SOCIETY OF NAVAL ARCHITECTS & MARINE

ENGINEERS

Mr. T. M. Buermann, Liaison

BRITISH NAVY STAFF

Dr. V. Flint, Liaison

CDR P. H. H. Ablett, RCNC, Liaison

AMERICAN BUREAU OF SHIPPING

WELDING RESEARCH COUNCIL

Mr. S. G. Stiansen - Member

Mr. K. H. Koopman, Liaison

Mr. F. J. Crurn - Member

Mr. C. Larson, Liaison

(7)

TANKER LONGITUDINAL STRENGTH ANALYSIS:

The computer program for the longitudinal strength analysis is

simple and can be used independently to compute the longitudinal stresses

and shear forces of the side shells and the longitudinal bulkheads.

Input:

Card No.

Format

Number of

transverses (maximum 50), MT

(15)

2

Type of transverses (JD(I), 1= l,MT)

(4012)

JD(I) =

1

for web frame

= 2 for swash bulkhead

= 3 for oil tight bulkhead

3

A

' Ab

, I

,

'b

, E ,

p

, L

(7E11.4)

A

= cross-sectional area

of

shell

Ab = cross-sectional area of longitudinal bulkhead

I

= moment of inertia of shell

'b = moment of inertia of bulkhead

E

= Young's modulus

p

= Poisson's ratio

L

= length of holds( transverse spacing)

4

Wcr

ZSdeck

ZSbotto

Zbdc. ZbbOtto

(7Ell.4)

= width wing tank

= width central tank

ZSdeck

= section modulus

of

shell at deck

ZSbttom = section modulus of shell at bottom

Zbdeck

= section modulus of bulkhead at deck

Zbbtto

= section modulus

of

bulkhead at bottom

(8)

Card No.

Format

5

8

Awebt

, Aswash

, Aott

Aweb

= Shear area for web frame

W

in wing tank

Awebt

Aswash

= Shear area for swash bulkhead

C

in central tank

Ao

= Shear area for oil-tight bulkhead

in central tank

7

Iwebt ,

Iswashwt

,

Iot

(7Ell .4)

Iweb

= Moment of inertia for web frame

W

in wing tank

Iswash

= Moment of inertia for swash bulkhead

W

in wing tank

Io t

= Moment of inertia for oil-tight bulkhead

in wing tank

Iwebt , Iswasht ,

lot

ct

2

= Shear area for web frame

in central tank

IOtct

(7Ell .4)

(7Ell .4)

= Moment of inertia for oil-tight bulkhead

in central tank

Aswash

= Shear area for swash bulkhead

in wing tank

Ao

= Shear area for oil-tight bulkhead

in wing tank

6

Aweb

, Aswasht ,

Aot

(7Ell .4)

Iweb

= Moment of inertia for web frame

in central tank

Iswash

= Moment of inertia for swash bulkhead

c

(9)

3

Card No.

Format

9a-9n

,

, N

(one card per

hold)*

(lx,4Ell.4)

= Uniform load in wing tank

= Uniform load in central tank

N = 1

if either

or

are non-zero

= O if there are no loads in this hold

*

(10)

4

Output

The output includes the longitudinal stress, the change of shear forces

of the longitudinal

members.

Example

The longitudinal analysis for tanker KOCKUMS 520

is used as an example.

Results from this calculation are based on the relative loading between

load-ing conditions No.

6 and No.

8.

They should not be regarded as the actual

stress

or shear force for full load condition.

The length units are in centimeters and the weight units are kilograms.

ÍEACT1ONSAT. THE INTERSECTIONS

.1 ...2

shells

longitudinal bulkheads

-.1350806

.21546+O6...

2

-.37010+05

.10605+06

3

.16282+06

-.93080+05

-.34042+05__._

.11O29+O6

5

-.14088+06

.19352+06

6

.14012+06

.61027+05

-7_...329O7+O6._...14258+05.

8

.23292+06

.92301+05

9

.b31+76+05

.24285+06

- -

.236651-06.

-

.94220+05.

11

.24936+06.

.77523+05

12

.15740+05

.31214+06

13 ...25121+06

.

.76910+05

14

.23513i-06

.90529+05

15

.80845+05

.25358+06

-. .. 16 -

.23080+06

.92196+05

-17

.

.23349+06

.96423+05

18

.83975+05

.24467+06

19.

.22728+06

.

.78431+05

20

.29010+06

.10946+06

21

-.32625+06

.57042+05

_._..22.

.-.43985+O6 .. -.51984+06

23

-.40585+06

-.44545+06

24

-.6120206

-.26968+06

25

-.42373+06

-.45027+06

26

-.42347+06

-.45099+06

27

-.61008+06

-.27142+06

28

-.40454+06...-.44122+06

29

-.39623+06

-.59474+06

(11)

INPUTS FOR THE PRIMARY STRENGTH

UNIFORM LOADS OF THE TRANSVERSES

LENGTH E GNU ANO THE WIDTH OF THE TANKS_ .1540+05

.2050+07 .3000-00 .1308+04 .0128+04

.1605+08. .1468+08

-ARLAS ANO_I

OF_ THE LONG UHOS & SHELLS

.5052+0q__.3906+010 - .2164+01

.1985+11

.1844+08

.1636+08

AREAS 0F TI-1E TRANSVERSES

.6636+03

.1713+O4. .3780+04_ .6984+03

.2189+04

3880+04

MOMENT OF_INERTIA OF THE TRANSVERSES

.5000+10 .6060+10 .6060+10 .5560+10 .6610+10 .6330+10

bENDING MOMENT ANO STRESSES

1 2 2

.9148+09

.5700402 .4961+02 .9711+09 .6615-+02 .0936+02 3

.1426+10

.8884+02 .7733+02 .1347+10 .9175+02 .8233+02

.1853+10

.1155+03 .1005+03 .1770+10 .1206+03 .1082+03 5

.2290+10

.1432+03 .1246+03 .2137+10 .1456+03 .1306+03 6

.2816+10

.1754+03 .1527+03 .2405+10 .1638+03 .1470+03 7

.3261+10

.2032+03 .1768+03 .2641+10 .1799+03

.1614+03.

8

.3538+10

.2204403 .1918+03 .2870+10 .1955+03 .1754+03 9

.3694+10

.2302+03 .2003+03 .3052+10 .2079+03 .18b5+03 10

.3808+10

.2373+03 .2065+03 .3109+10 .2118+03 .1900+03 11 .3801+10 .2368+03 .2061+03 .3117+10 .2123+03 .1905+03 12

.3665+10

.2284+03 .1988+03 .3086+10 .2102+03 .1886+03 13 .3522+10 .2194+03 .1910+03 .2894+10 .1972+03 .1769+03 14

.3249+10

.2024+03 .1762+03 .2663+00 .1814+03

.1628+03,

15 .2656+10

.177903

.1549+03 .2386+10 .1625+03 .1458+03 18 .2421+10 .1508+03 .1313+03 .1978+10 .1347+03 .1209+03. 17

.1868+10

.1164+03 .1013+03 .1523+10 .1037+03 .9300+02 18

.1195+10

.7443+02 .6476+02 .1017+10 .6931+02 .6219+02 19

.4783+09

.2960+02 .2594+02 .3863+09 .2632+02

.2361+02

20

-.3547+09

-.2210+02

-.1923+02

-.2851+09

-.1942+02

-.1743+02

21

-. 1337+10

-.8327+02

-.7248+02

-.1013+10

-.6899+02

-.6191+02

22

-.2151+10

- . 1340+07

-.1166+03

-.1770+10

.1206+03

-.1002+03.

23

-.2740+10

-.1707403

-.1486+03

-.2260+10

-.1539+03

-. 1301+03

24

-.31210

-.1944+03

-.1692+03

-.2521+10

-.1717+03

-.1541+03

25

-.3186+0

-.1985+03

-.1728+03

-.2644+10

-.1801+03

-.1616+03

26

-. 3034+1O- -.1890+03

-.1645+03

-.2536+10

-.1727+03

-.1550+03

27

-.2665+10 ,-,1661+03

-.1445+03

-.2196+10

-.1496+03

-.1342+03

28

- .1983+10

-.1236+03

-.1075+03

-.1717+10

-.1169+03

.1049+03

29

-.1093+10

-.6812+82

-.5929+02

-.1011+10

-.6857+02

-.6180+02

JJ.1F0RM LOADS 0F THE TRANSVERSES - .7710+06

.0420+86 -.7710+86 .8420+86 -.7710+06 .8420+06 - .7710+06 .6420+06 -.7710+08 .8420+06 - .7710+06 .8420+06 .9760+06 -.6480+06 .9760+00 -.6480+06 .9780+86 -.6480+06 .9760+06 -.6480+06 .9760+00 .0480+06. .9760+00 - .6480+06 .9768+06 - .6460+06 .9768+06 -.6460+06. .9760+06 -.6480+06 .9760+08 -.6480+06 .9780+06

.6480+06_________

.9760+00 -.6480+06 .9760+06 - .6480+06 .9870+06 -.6480+06 .9760+Ob - .6480+06 - .1270+06 -.6480+06 - .2270+06 -.6400+06 - .2270+00 - .6480+06 -.2270+06 -.6480+06 - .2270+06 -.6480+06 - .0270+06 - .6480+06 - .2270+06 -.64+0+06 - .2270406 .6480+0ó - .2270+06 - .6400+06

= Bending moment of the shells

Mb = Bending moment of the longitudinal bulkheads

(12)

Flow Chart.

INPUT

Deflection of

longitudinals

without support

Influence

Coeff i ci ents

TAdj

us ted

loads

-Wir

Deflection and

influ-ence coefficients of

transverses

Stiffness

matrix

t

Reactions at the

Intersections

I

Bending moment

and stresses

I

iL

End

(13)

r

222 223

7

DGLÑt lNPUt,UUt .tAPT5(NPUT,TAPE6=0U1PU

CZZZZIE FR5 MOMENT,MOMENT,MOME

OIME.NSION A(3,2) ,YI(3,2) ,Q(50,2).AF)50,50).AE(5O,50) DIMENSION IND(50,3) ,JD(50) 1) 50),R(50) OTMENSION YR)50),YC(50),D)5T DIMENSION DY(50,2),LQ)5G) READ (5,88) MT MY= MT+ 1 READ (5,89) (JD(I),I=1,MT) 79 1RMAT (2E11.4, (8) 88 FORMAT(15I5I 89 FORMAT (40121 08 FORMAT(7F11.4)

REST (5,98) Al ,AJ,XI ,XJ,E,GNU,ZLEN READ (5,98) V1,Y2,SM1,SM2,SNI,SN2

T. AI,AJ WEB AREA 0F THE SHELLS ANO THE LONGITUDINAL SULKHEADS C XI,XJ MOMENT DF INERTIA OF THE SHELLS AND BULKHEADS

C ZLEN LENGTH OF THE HOLDS

C YI,Y2 WIDTH OF THE WING AND CENTRAL TANKS READ (5,98) (A(I,l),I=l,3)

RESO (5,98) (A(I,2),I=1,3)

A) I.J) SHEAR AREA OF THE WEB FRAMS,SWASH BULKHEADS AND

OIL-C TIGHT BULKHEADS

READ (5.98) )YIII,I),I=1,3) READ (5,98) (YI(I,2I,I=1,3)

C YI(l,J) MOMENT OF INERTIA OF THE UEB FRAMES,SWASH BULKHEADS, AND OIL-TIGHT BULKHEADS

39

00 77 1=l,MV

77 READ (5,79) (Q1I,JI,J=1,2),LQ)I) UNNIFORM LOADS OF THE TRANSVERSES

99 FORMAI IlX,12E11.4)

-WRITE (6,100)

9f10 Ç)RMAt(/IX,31H UNIFORM LOADS ALONG THE HOLD I/I ITT FIRMAT(//13H INPUTS FOR THE PRIMARY STRENGTH II)

WRITA (6.101)

WRITE (6,99) ZLEN,E,GNU,Y1,Y2.SMI,SMO

101. FORMA' (/14011 LENGTH E GNU AND THE WIDTH 0J THE TANKS I/I

WRITE (6,102)

WRITE (6,99) AI,AJ,XI.XJ,SN1,SN2

11? Fr)RMAT(//40H ARFAS AND I OF THE LONG BHDS SHELLS //I

WRITE (6.103) )A(I,JI 1=1,3) ,J1,2)

5T3 FORMAT(//25H AREAS OF THE TRANSVERSES 6E11.4) WRITE (6,104) ((VI) I,J), (=1.3) ,J=1,2)

104 DRMAT(//37H MOMENT OF INERTIA OF THE TRANSVERSES //AEIS.4) WRITE (6,105)

TO I 1=1,11V

1 WRITE (6,99) (O(I,J),J=1,2)

105 FORMAT )//47H UNIFORM ANO CONCENTRATED LOADS ON THE SPACINGS II)

S=LLE N/FLOAT) MY)

5H1

IF (XJ.GT.O.TI GO TO 1001. GO 70 30

fot

Df) B )=1,MT X=FLOAT) I) *SP 00 2 J1,2 D V) I, J) 00 2 K=1,MY MK-1 I ILQ(K).EQ.0) GO TO 2 X1 FLOAT) M )*SP R7=FLOAT)K )*ÇP C=x2-X1 RDZ L EN-x 1/2.-12/2. X W0 (K .J XW=XW/E P 1=XW*XD/ZLEN A0O8 *R1 * ( X*X-ZLEN**2 I*x ADD=AOD4XW*X*( 8.*XD**3-2.*X2*C*CC**3)/ZLEN IF )X.GT.X2) GO TO 222 AOD=AOO*XW*X*2 .*C*C IF )X.LT.X1) GO TO 223 ADO=ADD-2.*IW*) X-XI)**4/C GO TO 723 AflO=ADO_8.*xW*(X_X1/2,_X2/2.)**3+XW*(2.*X2*C*C_C**31

DY) I,J)=OY( I,J)-A0O/48.

CONTINUE DO 39 J=1,MT IF (I.GT.J) GO TO 224 R=CLEN-FIOAT( J)*5P AF((,J)=X*B/E*)ZLEN**2-B*S-X*X)/ZIEN/6. Gfl TO 39 224 AP) I,J)AF(J,1) 39 CONTINUE CONTINUE

CALL MATINS(AF .50,MT.AE,50,T,DE .10,1 ND)

3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 31.10 31 1 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127. 3128 3129 3130 3131 3132 3133 3134 3135 3136, 3137

(14)

8

1F(I0.EQ.2) GO TO 225

DO4 I=l,MT

3139

00 4 J1,2

3140 Q(I,J)=O. 3141 -

00 4 K1,MT

3142 4 O(I,J)=Q(I,J)+AF(I,)*OY(K,J) 3143 WRITE (6,226) 3144

226 FOM4TI//35H UNIFORM LOADS OF THE TRANSVERSES II) 31.45

30 227 I1,MT 3146 227 WRITE (5,99) (Q(I,L),L1,2) 3147 00 10 I=1,MT 3148 XFLOATII)*SP 3149 00 10 J=1,MT 3150 IF (I.CT.JJ GO TO 9 3151 8=ZLEN-FLOAT(J)*SP 3152 X=FLL1ATU)*SP 3153 ACX*B/E*(ZLEM**2_8*B_X*X)/ZLENI6. 3154 AD=X*8/ZLEN/E*2.*I1.+GNU) 3155 L AF(1,J)=AC/X14AD/A1 3156 AE(I,J)=AC/XJ+AD/AJ 3157 GO TO 10 3158 9 AF(I,J)AF(J,I) 3159 AE(I,J)=AE)J,1) 3160 10 CONTINUE 3161 DO 20 I1,MT 3162 IJ=JD(I) 3163 A1=A(IJ,1) 3164 42A) IJ,2) 3165 81=Y1(1J,1) 3166 B2=YI(IJ,2) 3167

01Q(I,1)/Y1

3168 02=Q(I,2)/V2 - 3169 OQ=)21*Y1402*Y2) 3170

CALI DECOIBI, 82, A1,A2,Y1,Y2,Q1,Q2,XK,XD,1) 3171

D(I)=XD 3172 WRITE (6,99) D(1),XK 3173 00 18 J1,MT 3174 AE( I,J)=AE(1,J)+AF(I,J) 3175 IF (I.NE.J) GO TO 18 3176 AE(I,J)=AE(I,J)+X( 3177 iä CONTINUE 3178 DO 19 J1,MT 3179 1.9 D(l)=DII)+AF(I,J)*(Q(J,1)+Q(J,2) 3180 20 CONTINUE 3181 WRITE (6,99) )D(K),K1,MT) 3182 CALL MATINS(AE,5O,MT,AF,50,O,DE,ID,IND) 3183 IF (ID.EO.1) GO TO 30 3184 225 WRITE (6,21) 3185

21 FORMAT (I/25H MATRIX SINGULAR II) 3186

STOR 3187

3D WRITE (6,33) (K,K=1,2) 3188

33 FORMAT (//32H REACTIONS AT THE INTERSECTIONS 2110//I 3189

00 40 11,MT

3190

R(I)0.

3191 IF(NH.EQ.1) GO TO 331 3192 T) I)=Q( I,1)+QII,2) 3193 GO TO 40 3194 3101 DO 35 J=1,MT 3195 35 RII)R(I)-iAE)I,J)*D(J) 3196 T) I)=Q( 1,11+0)1,2)-A) 1) 3197 40 WRITE (6,46) j,TII),R(t) 3198 46 FORMAT (I15,2E16.5) 3199 WRITE (6,62) )K,K=1,2) 3200 XM=0. 3201 XM=fl. 3202 DO 50 I=1,MT 3203 XN=X'4+R(1)*(1.-FLDAT(I)./FIOATIMY)) 3204 XMXM+T(I)*)1.-FLOA1(I)/FLOAT(MY)) 3205 50 CONTINUE 3206 B(1)=XM*SP 3207

YC(1)XN*SP

3208

DO AO 12,MT

3209 3210 XMXM-T)J) 3211 XN=XN-R(J) 3212 Y8(I)=YBIJ)+XM*SP 3213 SB=YB(I)I'SMl 3214 S0=VB) t 1/SNI 3215 YC(T)VC)J)+XN*5P 3216 SC=YC(I)/SM2 3217 SE=YC(I)/SN2 3218 WRITE (6,64) I,YB)I),SB,SD,YC(I),SC,SE 3219 60 CONTINUE 3220

62 FopMAr(//28H BENDING MOMENT AND STRESSES 110,120,1/) 32Z1

64 FORMAT(I4,6E11.4) 3222

STOP 3223

(15)

g CZ2ZLIF FR5 MLJIT,MULT,MULT 3225_ SUBRJUTINE MULT(D,B.C,M) 3226 DIMENSION 8(M,M),C)M,M ),0(14,M) 3227 Dl 1 I=1,M 3228 DO 1 J=l,M 3229 DII,JI=l. 3230 DO 11 KI,H 3231 11 D(I,J)=D(I,JI.B(I,KÌSCIK,J1 3232 CONTINUE 3233 RETURN 3234 END 3235

W

¿221E SUBROUTINE EQUA(A,B,H)ERS EOUA,EQUA.EQUA 32363237

DIMENSION A(M,M),B(M,M) 3238 DO 1 (=I,H 3239 )Ç) I J=1,M 3240 AII,J)=B(I,J) 3241 RETURN 3242 END 243

CZZZZIE ERS DECO,DECO,DECO 3244

SUBROUTINE DECO(X1,Y I, A1,A2,A,C,Q1,Q2,XK,XD,M) 3245

THIS IS FOR THE LONGITUDINAL STRESSES OF SHIPS. 3246

DIMENSION T1(5,5I.T2(5,5),T( 5,5) 3247'

CALL TM(A1,X!,A,Q1,T1,D.,MI 324

CALL TM(A2,YI,C.02,T2,O.,M) 324

CALI HUIT (I,T2,T1,5) 32501

N1

3251 QD=T(2,2)*T(4,41-T( 2,4)*T(4,2( 3252 U=T(2,4)*I(4,5)/00-T(2,5)iT(4,4)/QO 3253 V=T(2,5)*T(4,2) /Q0-T12,21*T14,5)IQQ 3254 X=T1(1,2I*U+T1(1,4I*V*T1(I,5( 3255 GO TO (2,3),N 325 2 XO=X 325 6 11(1,51=0. 3258 1112,51=0. 3259k 1113,51=0. 3260 11(4,51=-1. 3261 12(1,91=0. 3262 T2(2,5)=O. 3263 1213,51=0. 3264 T7(4,5)=C'. 3265 CALL MULT (T,T2,T1,5) 3266

MN+1

3267 GD TO 1 3268 3

RKX

3269 RETURN 3270 END 3271 CEZZZIE FRS TM,TM,TM 3272

SUBROUTINE TM(A1,XI ,A,Q,T,P,Ml 3273

DIMENSION 1(5,5) 3274 00 1 (=1,5 3275 DO 1 J=l,5 3276 T(I,Jl=0. 3277 1(1,11=1. 3278' FI3O0flOflO.*XI 3279 1(1,21=-A 3280 T(1,3)=-A*A/2./EI 3281 T(1,4)=-A**3/6./EI 3282 T11,B)=O*AS*4/24./EI 3283 F=30070000. 3284 G=E12./l.3 3285

AGA1*G

3286 1(4,41=1. 3287 1(5,51=1. 3288 TI4,5)-Q*A-R 3289 112.21=1. 3290 1(2,31=8/EI 3291. - T(2,4)=A*A/2./EI 3292 T(?,5)=-0*A**316./EI 3293 T13,S)=-Q*A*Al2. 3294 1(5,31=1. 3295 - 1(3,41=6 3296 IF (M.EQ.0) GO TO 2 3297 T(L,4)T(1,4)+A'/AG 3298 T(,5(=T(1,5)-0*A*A/2./AG 3299 2 CONI INJF 3300 RCTURN 3301

END

3302 21271E FR5 MAT1NS,MATIS,MATINS 3303

UBRJUTINE MATINSEA,NR,N1,B,NC,M1,DETERM,ID, INDEX) 3304

EQU(VALE'ICE I !ROW,JROW), (ICOLUM,JCOLUM), (AMAR, T, SWAP) 3305 DIMENSION A(MRNR), B(HR,NC) INDEX(NR3J 3306

(16)

lo

IIITIALIZAT10N iiO( 3308 3309

5N1

3310

MM1

3311 DETERM 1.0E-08 3312 00 2') J=1,N 3313 20 I'IOEX(J,31 = O 3314 0) 55) I'1,N 3315 3316

SEARCH FOR PIVOT ELEMENT 3317

3318 AMAI = 0.0 3319 00 105 J=1,N 3320 i IF(INOEX(J,3)-1) 63, 105, 60 3321 f 60 DO 100 K1,N 3322 ¡FI INDEXIK,3)-1) 80, 100, 715 3323

j 80 IF I AMAI -ABS (A(J,KH) 85, 100, 100 3324

95 IROW=J 3325

I ICOLUM K 3326

AMAI = ABS IA(J,K)I 3327

100 CONTINUE 3328 105 CONTINUE 3329 IM)EX(ICOLUM,36 = INOEXIICOLUM,3) *1 3330 INC1EX( 1,11=150W 3331 IN')EI(L.2)=ICOLUM 3332 t 3333

INTERCHANGE ROWS TO PUT PIVOT ELEMENT ON DIAGONAL 3334

C 3335 ¿ IF (IROW-ICOLUM) 140, 310, 140 333& 140 OETERM=-OETERM 3337 00 200 L1,N 3338 SWAP=A( IROW,L) 3339: f A(IRC3,L)=A)ICQLUM,L) 3340 20') A(ICOLUM,L)SWAP 3341 31), 310, 210 3342

,¡FIN)

21') 00 250 L1, M 3343 SWAP=BIIROW,L) 3344 B(IR(1W,L)=B(ICOLUM,LI 3345 t 250 8(ICOLUM.L)SWAP 334& 3341

O1VIOE PIVOT ROW BY PIVOT ELEMENT 3348

t 3349 310 PIVOT =4) ICOLUM,ICOLUN) 335 DETERM=OETERM*PIVOT 3351f 330 A(ICOLUM,ICOLUN)1.D - 335 DO 350 L1,N 335 350 A(ICOLUM,L)A(ICOLUM.L)/PIVOT 335, I(M) 380, 380, 360 335 360 OD 370 L1,M 335 370 B(ICDLUM,L)=8(ICOLUM,1)/PIVOT 33576 335

C REDUCE NON-PIVOT ROWS 3359

t 336k 380 0) 55) L1=1,N 3361. IFILI-ICOLUM) 400, 550, 400 3382, 4)0 )A(Ll,ICOLUM) 3363. 51L1,ICDLUM)0.O 3364, 00 450 LI,N 3365 450 A)L1,L)A111,L)-A( ICOLUM,L)ST 3366, IF(M) 550, 550, 460 3367 46') 00 500 L1,M 3368 500 RILI,L)=8(L1,LI-B( ICOLJM.L)*T 3369 550 ONT!NUE 3370 3371 Ç INTERCHANGE COLUMNS 3372 C 3373 00 710 I=1,N 3374 LN+1- I 3375 - IF (I'IDEX(L,l)-INDEI(L,Z)) 630, 710, 630 3376 630 JROWINOEX)L,1) 3377 JCOLUM=IMDE I) L,2) 3378 DO 705 K1,N 3379 SWAPA(K, JPOW 3380 l(K,JROW) =AtK,JCOLUMI 3381 A(K,JCOLJM)=SWAP 3382 705 CONTINUE 3383 710 CONTINUE 3384 DO 730 K = 1,N 338S IF(IMDEXIK,3) -1) 715,720,715 3386 72f) CONTINUE 3-387 730 CONTINUE 3388 ID 1 3389 810 RETURN 3390 715 10 = 2 3391 GO TO 810 3392 E'IO 3393

(17)

UNCLASSIFIED

'rrr,tv Classiuicatio

)D

I NOV 68 I

FORM 1473

(PAGE 1)

i/N 0101.807.6801

UNCLASSIFIED

Secucity Classification

DOCUMENT CONTROL DATA - R & D

Security classification of title, body of abstract arid indexing annotation Oust be entered when the overall report is classified,)

t. ORIGINA TING ACTIVITY (Corporate author)

COM/CODE Corporation

Alexandria, Virginia

2a. REPORT SECURITS CLASSIFICATION

Unclassified

2h. GROUP

3 REPORT TITLE

Tanker Longitudinal Strength Analysis -- User's Manual and Computer Program

4, DESCRIPTIVE NOTES (Type o(report and inclusive dates)

5. A(JTHORISI (First name, middle initial, laat name)

R. Nielson, P. Y. Chang, and L. C. Deschamps

6. REPORT DATE

July 1972

la. TOTAL NO. OF PAGES

10

7h. NO. OF REFS 8e. CONTRACT OR GRANT NO.

N00024-70-C-5219

b. PROJECT NO.

c.

d.

ea. ORIGINATORS REPORT NUMBERISI

ab. OTHER REPORT NO(SI (Any othet numbere that may be aaslgned 1h,, report)

SSC-226

IO. DISTRIBUTION STATEMENT

Uni imi ted

II. SUPPLEMENTARY NOTES

12. SPONSORING MILITARY ACTIVITY

Naval Ship Systems Connand

tI, ABSTRACT

This report, the second in a sequence of four Ship Structure

Committee Reports on a method for performing structural analysis

of a tanker hull, contains the User's Manual and Computer Program

for the longitudinal strength analysis portion of the program.

(18)

UNCLASSIFIED

Security Classification

D D

1 NOV 65

FORM 1473

(BACK)

I

(PAGE- 2)

UNCLASSIFIED

Security Classification

GPO 9313-951 4

KEY WORDS

LINK A

LINK O

LINK C

Cytaty

Powiązane dokumenty

And thus, it is necessary to stimulate in local communities a readiness to protect remnants of the history and va­ lues of cultural environment, responsibility

[r]

Treść artykułu została podzielona na następujące części: wstęp, pojęcie mniejszość narodowej i etnicznej, problem komunikacji, generalne rozważania o

Obserwując popularność licznych produkcji filmowych prezentujących interesujące dylematy moralne, dostrzec można, iż w ostatnich latach widać pojawienie się

Another consequence of the quadratic coupling is the photon state dependence of the mechanical frequency, which leads to collapse and revivals of the me- chanical motion for

Pawła Włodkowica w Płocku dla potrzeb sportu: raport z badań / Zbigniew Kruszewski, Andrzej Kansy // Rocznik To- warzystwa Naukowego

Chwalebny bardzo Autora zamiar, godny miłośnika mądrości i ludu, ale nie­ zmiernie trudny — połączyć ściślej Religią z Filozofią, te dwa ży­ wioły