• Nie Znaleziono Wyników

Dany jest prostopadłościan o podstawie kwadratowej

N/A
N/A
Protected

Academic year: 2022

Share "Dany jest prostopadłościan o podstawie kwadratowej"

Copied!
1
0
0

Pełen tekst

(1)

Zestaw 28

1. Dany jest prostopadłościan o podstawie kwadratowej.

Przekątna tego prostopadłościanu ma długość 𝑑, a jego pole powierzchni jest równe 𝑏. Oblicz sumę długości wszystkich krawędzi prostopadłościanu.

2. Rozstrzygnij, czy istnieje ostrosłup czworokątny, którego każda krawędź boczna jest prostopadła do którejś krawędzi podstawy.

3. Pewna płaszczyzna przecina krawędzie BC, BD, DA, AC czworościanu ABCD odpowiednio w punktach K, L, M, N.

Wykaż, że proste KN, LM, i AB przecinają się w jednym punkcie lub są równoległe.

Rozwiązania należy oddać do piątku 26 kwietnia do godziny 13.00 koordynatorowi konkursu panu Jarosławowi Szczepaniakowi lub przesłać na adres jareksz@interia.pl do soboty 27 kwietnia

do północy.

Cytaty

Powiązane dokumenty

Rozwiązania należy oddać do piątku 1 października do godziny 16.00 koordynatorowi konkursu panu Jarosławowi Szczepaniakowi lub przesłać na adres jareksz@interia.pl do soboty

Rozwiązania należy oddać do piątku 8 października do godziny 16.00 koordynatorowi konkursu panu Jarosławowi Szczepaniakowi lub przesłać na adres jareksz@interia.pl do soboty

Rozwiązania należy oddać do piątku 18 września do godziny 16.00 koordynatorowi konkursu. panu Jarosławowi Szczepaniakowi lub przesłać na adres jareksz@interia.pl do soboty

Rozwiązania należy oddać do piątku 9 października do godziny 16.00 koordynatorowi konkursu. panu Jarosławowi Szczepaniakowi lub przesłać na adres jareksz@interia.pl do soboty

Rozwiązania należy oddać do piątku 8 listopada do godziny 15.10 koordynatorowi konkursu. panu Jarosławowi Szczepaniakowi lub przesłać na adres jareksz@interia.pl do soboty 9

Rozwiązania należy oddać do piątku 29 listopada do godziny 15.10 koordynatorowi konkursu. panu Jarosławowi Szczepaniakowi lub przesłać na adres jareksz@interia.pl do soboty

W trójkąt ostrokątny ABC wpisano kwadrat tak, że dwa jego wierzchołki należą do boku AB, a dwa pozostałe do pozostałych boków trójkąta.. Udowodnij, że pole tego

Rozwiązania należy oddać do piątku 17 stycznia do godziny 15.00 koordynatorowi konkursu. panu Jarosławowi Szczepaniakowi lub przesłać na adres jareksz@interia.pl do soboty 18

Rozwiązania należy oddać do piątku 9 listopada do godziny 15.10 koordynatorowi konkursu panu Jarosławowi Szczepaniakowi lub przesłać na adres jareksz@interia.pl do soboty

Rozwiązania należy oddać do piątku 23 listopada do godziny 15.10 koordynatorowi konkursu panu Jarosławowi Szczepaniakowi lub przesłać na adres jareksz@interia.pl do soboty

Rozwiązania należy oddać do piątku 30 listopada do godziny 15.10 koordynatorowi konkursu panu Jarosławowi Szczepaniakowi lub przesłać na adres jareksz@interia.pl do soboty 1

Rozwiązania należy oddać do piątku 7 grudnia do godziny 15.10 koordynatorowi konkursu panu Jarosławowi Szczepaniakowi lub przesłać na adres jareksz@interia.pl do soboty 8

Rozwiązania należy oddać do piątku 14 grudnia do godziny 15.10 koordynatorowi konkursu panu Jarosławowi Szczepaniakowi lub przesłać na adres jareksz@interia.pl do soboty 15

Rozwiązania należy oddać do piątku 11 stycznia do godziny 14.00 koordynatorowi konkursu panu Jarosławowi Szczepaniakowi lub przesłać na adres jareksz@interia.pl do soboty

Rozwiązania należy oddać do piątku 1 lutego do godziny 14.00 koordynatorowi konkursu panu Jarosławowi Szczepaniakowi lub przesłać na adres jareksz@interia.pl do soboty 2 lutego.

Rozwiązania należy oddać do piątku 8 lutego do godziny 14.00 koordynatorowi konkursu panu Jarosławowi Szczepaniakowi lub przesłać na adres jareksz@interia.pl do soboty 9 lutego.

Rozwiązania należy oddać do piątku 22 lutego do godziny 14.00 koordynatorowi konkursu panu Jarosławowi Szczepaniakowi lub przesłać na adres jareksz@interia.pl do soboty 23 lutego.

Rozwiązania należy oddać do piątku 1 marca do godziny 14.00 koordynatorowi konkursu panu Jarosławowi Szczepaniakowi lub przesłać na adres jareksz@interia.pl do soboty 2 marca.

Rozwiązania należy oddać do piątku 29 marca do godziny 14.00 koordynatorowi konkursu panu Jarosławowi Szczepaniakowi lub przesłać na adres jareksz@interia.pl do soboty 30 marca.

Rozwiązania należy oddać do piątku 5 kwietnia do godziny 14.00 koordynatorowi konkursu panu Jarosławowi Szczepaniakowi lub przesłać na adres jareksz@interia.pl do soboty 6

Rozwiązania należy oddać do piątku 31 maja do godziny 13.00 koordynatorowi konkursu panu Jarosławowi Szczepaniakowi lub przesłać na adres jareksz@interia.pl do soboty 1 czerwca.

Rozwiązania należy oddać do piątku 19 stycznia do godziny 15.00 koordynatorowi konkursu. panu Jarosławowi Szczepaniakowi lub przesłać na adres jareksz@interia.pl do soboty 20

Rozwiązania należy oddać do piątku 13 kwietnia do godziny 15.00 koordynatorowi konkursu. panu Jarosławowi Szczepaniakowi lub przesłać na adres jareksz@interia.pl do soboty 14