• Nie Znaleziono Wyników

structural RNAs! sRNAs! siRNA

N/A
N/A
Protected

Academic year: 2022

Share "structural RNAs! sRNAs! siRNA"

Copied!
63
0
0

Pełen tekst

(1)

structural RNAs!

sRNAs!

siRNA!

miRNA!

lncRNAs!

pervasive

transcripts!

(2)

HISTORY OF RNA

Rinn and Chang, Ann. Rev. Biochem, 2012

(3)

RNA made via condensation from ribose and other organic substances

RNA evolution- molecules learns to replicate

RNA starts to join aminoacids and synthesises polypeptides and proteins

Proteins aid RNA to replicate and make proteins. dsRNA evolves into stable DNA.

DNA and proteins take over major roles as genetic information and enzymes

„primordial soup”

„prebiotic soup”

„THE RNA WORLD” hypothesis

pre-RNA world RNA world

RNA+proteins

RNA+DNA+

proteins

(4)

Library of randomized RNA sequences (1015)

SELEX cycles

1. binding

2. washing

3. elution 4. Amplification

RT-PCR

5. in vitro transcription

final molecules:

cloning, analysis

last cycle

Enriched library

discard -

molecules that do not bind

molecules that bind

Enrichment

Target

tests

SELEX = Systematic Evolution of Ligands by EXponential enrichment

Szostak Gold

1990

Method of selecting RNA/DNA molecules with desired properties (aptamers, ribozymes) based on cycles of amplification

Selected RNAs:

-  cleave DNA i RNA -  ligate RNAs

-  self-replicate

-  create peptide bonds

(5)

ncRNA

•  Housekeeping

- constitutively expressed

- required for normal function and cell viability

•  Regulatory

- expressed temporarily (development, response to stimuli)

- affect gene expression at the level of transcription or translation

•  tRNA and rRNA – translation

•  snRNA – splicesosome components, pre-mRNA splicing

•  snoRNA – rRNA processing and modification, scaRNA (CB specific)

•  RNA components of RNase P and RNase MRP – endonucleases:

tRNA and rRNA processing

•  Signal Recognition Particle SRP RNA – protein secretion to ER

•  tmRNA tRNA-mRNA hybrid- targeting nascent proteins for degradation

•  gRNA – guide RNA in RNA editing

•  telomerase RNA – synthesis of telomers

•  sRNAs: siRNA (exo-siRNAs and endo-siRNAs; ta-siRNA; nat-siRNA;

lsiRNAs); miRNA; piRNA – act in TGS or PTGS

•  lncRNAs – much less known, usually act in TGS (chromatin level)

(6)

Tisseur et al., Biochemie, 2011

ALL

ncRNAs?

(7)

GENE SILENCING – RNAi

DISCOVERY OF 2002:!

ncRNAs in RNAi!

siRNAs/miRNAs:

- double stranded small noncoding RNAs

- complementary to mRNA targets

- participate in gene silencing

-   mediate:

TRANSCRIPTIONAL GENE SILENCING (TGS)

•   transcription inhibition POST-TRANSCRIPTIONAL GENE SILENCING (PTGS)

•   mRNA cleavage or

•   translation inhibition or

•   translation activation

(8)

Rusk, Nature Meth, 2008

Activation of translation (PTGS)

Interfering RNAs: mode of action

Tijsterman and Plasterk, Cell, 2004

miRNA siRNA

siRNA/miRNA-dependent cleavage (PTGS)

Inhibition of translation (PTGS)

Transcriptional silencing (TGS)

Bartel, Cell, 2004

(9)

PTGS : Post Transcriptional Gene Silencing (RISC)

mRNA cleavage or mRNA decay, translation repression /activation

•  siRNA (exo-siRNAs and endo-siRNAs; ta-siRNA; nat-siRNA; lsiRNAs)

•  miRNA (mirtron)

•  piRNA!

TGS : Transcriptional Gene Silencing (RITS)

heterochromatin formation, DNA methylation, transposon silencing

•  siRNA!

•  piRNAs !

Holo-RISC

RNA Pol RNA Pol IV

(10)

PTGS : Post Transcriptional Gene Silencing (RISC)

mRNA cleavage or mRNA decay, translation repression/activation

•  siRNA, miRNA- ( plants, algae, animals, viruses, protists ); piRNA (metazoans)

•  exo-siRNAs – exogenous siRNA, act usually in cis (animals, plants, fungi)!

viral-siRNAs – exogenous siRNAs, viral genome (plants)

transgene siRNAs – against foreign RNA (animals, plants, fungi)!

•  endo-siRNAs - endogenous siRNAs, act usually in cis !

•  ta-siRNA – trans-acting, generated by miRNA cleavage of ncRNAs (plants)!

•  nat-siRNA- natural antisense-derived siRNAs (plants)!

•  lsiRNAs – long siRNAs (30–40 nts) derived from antisense RNAs (plants)

•  mirtron- intron-encoded miRNAs that bypass Dicer processing (animal)!

(11)

miRNA

(microRNA)

plants animals viruses, Protista

20–25nt

Drosha

(animals)

+ Dicer

Pol II /Pol III transcripts

mRNA stability

translation inhibition (mRNA cleavage or decay)

mirtrons – derived from pre-mRNA introns; present in animals

siRNA

(small interferring RNA) – most act in cis, except tasiRNA

exo-siRNA

(exogenous)

plants fungi animals Protista

21-24nt Dicer transgenic, virus-derived or other exogenic RNA

PTGS

anti-virus defence

endo-siRNA

(endogenous)

plants fungi, animals Protista

~21nt Dicer

Bi-directional or

convergent transcription mRNA base-pairing with antisense pseudogenes

PTGS,

transposon regulation

tasiRNA

(trans-acting siRNA)

plants 21nt DCL4 TAS RNA precursors

cleaved by miRNA PTGS

natsiRNA

(natural antisense transcripts- derived siRNA)

plants 24nt 21nt

DCL2 DCL1

Stress-induced

bi-directional transcription Stress response

PTGS : Post Transcriptional Gene Silencing (RISC)

(12)

TGS : Transcriptional Gene Silencing (RITS)

siRNA

(small interferring RNA)

endo-siRNA

(endogenous)

plants fungi animals Protista

~21nt Dicer

Bi-directional or convergent transcription

mRNA base-pairing with antisense pseudogenes

TGS,

transposon regulation

hc-siRNA

(repeat-associated heterochromatic siRNA)

plants

S. pombe 24-26nt DCL3 Transposons, repeats Chromatin modification

piRNA

(Piwi-interacting RNA)

Drosophila, C. elegans, mammals, Danio rerio

24–30nt Dicer-

independent Long primary transcripts transposon regulation

heterochromatin formation, DNA methylation, transposon silencing

RNA Pol IV-V and RDRP- DNA/RNA dep RNA Pol involved in siRNA

production and amplification (plants, worms)

(13)

DICER and AGO:

two major players

PAZ

RIII

RIII

DICER or DICER-like (DCL)

Liu and Paroo, Annu. Rev. Biochem., 2010 DICER

dsRNA

siRNA

RISC

AGO

(14)

DICER and AGO:

two major players

Liu and Paroo, Annu. Rev. Biochem., 2010

ARGONAUTE

(15)

Plants

A. thaliana 10 - 4 (DCL 1-4) 6

O. sativa 18 - 5 5

S. cerevisiae - - - -

S. pombe 1 - 1 1

N. crassa 1 - 1 3

A. nidulans 1 - 1 2

C. elegans 5 3 2 (Dicer + Drosha) 4 D. melanogaster 2 3 3 (2 Dicers + Drosha) -

D. rerio 4 4 2 (Dicer + Drosha) -

H. sapiens 4 4 2 (Dicer + Drosha) -

Multiple DICERs and AGOs

DCL4 DCL1

Czech and Hannon, Nat. Rev. Genet., 2010

(16)

siRNAs

viral ssRNA

viral RdRP

AGO1/2 21-22nt siRNA

AGO1/2 silencing of viral

replication viral dsRNA

plants

metazoans

AGO1/2 21-22nt

siRNA mRNA cleavage

exogenous dsRNA

AGO1/2

RdRP

siRNA amplification

secondary siRNA AGO

(17)

Signal amplification

(18)

siRNAs in TGS (plants)

AGO4

siRNA

DCL3

RDR2

2°siRNA

RNA Pl IV RNA Pol IV

DCL3 RNA Pol V

(19)

Pol IV/Pol V (plants)

Wierzbicki, Current Opinion Plant Biol., 2012

•  lncRNA precursors to siRNA generated by Pol IV recruited by SHH1, CLSY1 provides processivity!

•  dsRNA precursors produced by PolII

(overlapping or inverted repeat transcripts)!

•  RDR2 co-transcriptionally converts lncRNAs into dsRNAs

•  24-nt siRNAs produced by DCL3 (Dicer)

•  Pol V synthesizes scaffold transcripts

RDM1, DRD1, DMS3, DMS11 provide processivity!

•  Pol V transcripts bind AGO4/siRNA, SPT5L, IDN2

•  AGO4/siRNA recognizes genomic targets by basepairing with lncRNA (PolV)

•  AGO4 interacts with WG/GW domains of Pol IV and SPT5L

•  transcriptional silencing is established by de

novo DNA methylation by DRM2

(20)

Law and Jacobsen , Nat Rev Genet, 2010

siRNAs in TGS (plants)

(21)

Shiv et al., Nature., 2007

siRNAs in TGS (S. pombe)

(22)

miRNAs

Gangaraju and Lin, Nat. Rev. Mol.Cel. Biol., 2009

Voinnet, Cell, 2009; Ghildiyal and Zamore, Nat. Rev. Genet., 2009

Ago-associated 20–24 nts Dicer-dep., dsRNAs

Ago-associated 21 nts, dsRNAs plant specific miRNA-dep.

tasiRNAs…

siRNAs

Piwi-associated 26–32 nts, ssRNAs germline specific Dicer-indep.

piRNAs

(23)

miRNA BIOGENESIS (animals)

Krol et al., Nat.Rev.Genet., 2010

(24)

Jones-Rhoades et al., Ann.Rev.Plant.Biol.., 2006

miRNA BIOGENESIS

(plants)

(25)

siRNA/miRNA-dependent RNA decay

stress, development

Houseley and Tollervey, Cell, 2009

(26)

MECHANISM of miRNA-mediated PTGS (plants)

(27)

MECHANISM of miRNA-mediated PTGS (animals)

(28)

TRANSLATIONAL REPRESSION

(29)

Step 1. Initial effect of miRNAs: inhibition of translation at the initiation step without mRNA decay.

Step 2. mRNA deadenylation by PAN2–PAN3 and CCR4–NOT complexes recruited by

miRISC as a consequence of translation inhibition that makes poly(A) tail more accessible.

Step3. Stimulated deadenylation potentiates the effect on translational inhibition and leads to decay of target mRNAs through the recruitment of the decapping machinery

Destabilization of target mRNA is the predominant reason for reduced protein output.

(30)

Liu et al, Nature Cell Biol, 2005 Parker and Seth, Mol. Cell, 2007

P bodies, GW bodies, siRNAi bodies

Jouannet et al., EMBO J, 2012

(31)

REGULATION of miRNAs

Krol et al., Nat.Rev.Genet., 2010

(32)

ncRNA regulation

•  ncRNAs control gene expression (mRNAs) on different levels during various cellular and development processes

•  expression of ncRNAs itself is regulated via transcription, biogenesis, protein binding and turnover

Ding et al, TiB, 2009

LIN28/28B binds to let7 family pri-miRNAs and block their processing by Drosha in the nucleus

LIN28 binds to let7 pre-miRNAs and block their processing by Dicer in the cytoplasm

let7 miR-128 targets lin-28 mRNA 3’ UTR inhibiting LIN28 translation!

(33)

miRNA degradation

3’ oligouridylation

PUP Poly(U) Polymerases TUTase Terminal Uridylyl Transferase

mature!

Arabidopsis !

Chlamydomonas!

Krol et al., Nat.Rev.Genet, 2010; Kai and Pasquinelli, Nat.Str.Mol.Biol., 2010; Krol et al., Cell, 2010

precursors C. elegans!

(34)

RNAi and EDITING

Nishikura,Ann. Rev. Biochem., 2010

(35)

Ota et al., Cell 2013

Additional function of ADAR1:

ADAR1 increases the rate of pre-miRNA cleavage by Dicer and facilitates loading of miRNA onto RISC complex

RNAi and EDITING

ADAR1 homodimer – editing

ADAR1/Dicer dimer - silencing

(36)

Xhemalce et al., Cell, 2012

miRNA regulation via modification

BCDIN3D methyltransferase phospho-dimethylates 5’ end of pre-miRNA, impairing its

processing by Dicer

Heo et al., Cell, 2012

Drosha processing of group II miRNA (let-7b) gives 1 nt 3’ overhang Oligo-uridylation in the presence of let-7 suppressor Lin28 (embryonic stem cells) by TUT4 leads to miRNA decay.

Mono-uridylation in the absence of Lin28 (somatic cells) by TUT7, 4 or 2

results in miRNA processing by Dicer

(37)

miRNA FUNCTION (plants)

(38)

miRNA FUNCTION (animals)

C. elegans

development lin-14 gene

(39)

miRNA FUNCTION (animals)

(40)

Mercer et al., Nat.Rev.Genet., 2007

ncRNA recruit chromatin modifying complex to genes, resulting in H3meK27 and heterochromatin formation

ncRNAs act as repressors or enhancers of

transcription via binding to protein factors or DNA

ncRNAs mask 5’ splice

site resulting in intron

retention, recognition of

IRE and translation

(41)

FUNCTIONS of LONG ncRNAs

Chen and Carmichael, WIRERNA, 2010

(42)

FUNCTIONS of LONG ncRNAs

Wapinski and Chang, TiCS, 2011

(43)

MECHANISM of ACTION of LONG ncRNAs

Nagano and Fraser, Cell, 2011

Cotranscriptional recruitment of chromatin-modifying factors.

Nucleation of chromatin.

Dynamic assembly of nuclear structures:

paraspecles, nuclear bodies

Formation of higher-order chromatin loops

•  GUIDES (chromatin modifyiers)

•  TRX FACTORS

•  SCAFFOLDS (RNP structures)

(44)

Xist ncRNA – inactivation of X chromosome

Xist (X-inactive specific transcript, 19 kb ) expressed from inactive X

wrapped around X

Tsix (40 kb) expressed from active X

Dosage compensation – one copy of X chromosome

in females is epigenetically silenced (mammals)

(45)

FUNCTIONS of ANTISENSE RNAs

Rosonina and Manley, Dev. Cell, 2010

FLC – Flowering Locus C

- MADS box transcription factor - major repressor of flowering in plants

- expression regulated by FLC antisense

•  two major forms of FLC antisense are synthesized

•  regulated by alternative polyadenylation by RNA binding proteins, FPA and FCA, and CTSF factor FY

•  short asFLC (3’ processing at site I) recruits histone demethylase FLD which introduces transcriptionally repressive histone modifications leading to FLC silencing

•  long asFLC (3’ processing at site II) causes nucleosomal rearrangements at

the FLC promoter leading to FLC transcription

(46)

MALAT1/mascRNA

•  Pol II polyadenylated transcript, a minor form of MALAT1,

precursor to mature MALAT1 and mascRNA

•  Processing by RNAseP (5’) and RNaseZ (3’) releases 6.7 kb

MALAT1 and tRNA-like

mascRNA, exported to cytoplasm after addition of the CCA

Wilusz and Spector, RNA, 2010

MALAT1:

-   metastasis-associated lung adenocarcinoma transcript 1 (NEAT2 in humans) -   enriched in nuclear speckles

-   possibly regulates alternative splicing (associates with SR proteins) mascRNA:

- present in the cytoplasm, processed from pre-MALAT1, function unknown

(47)

NEAT1 and MALAT1 !

NEAT1 MALAT1

paraspecles nuclear

specles

Chen and Carmichael, WIRERNA, 2010

(48)

TERRA – telomeric repeat-containing RNA

(yeast and human)

Luke and Lingner., EMBO J, 2009

•  polyadenylated Pol II transcript

•  spans subtelomeric and telomeric regions

•  a component of telomeric heterochromatin

•  associates with telomeres and telomere proteins (Trf1, Trf2)

•  regulated by RNA surveillance ( Rat1 , Trf4, NMD factors, RNAse H)

•  regulates telomerase (telomere shortening) via RNA-DNA hybrids

•  acts in chromatin remodelling (development and differentiation)

•  affects telomere replication

• upregulated in ICF patients

(Immunodeficiency, Centromeric region

instability, Facial anomalies)

(49)

Chen and Carmichael, WIRERNA, 2010

(50)

INVISIBLE RNAs

(51)

PERVASIVE TRANSCRIPTION OF THE GENOME

(1) protein-coding mRNA; (2) PROMPT - promoter upstream transcripts (short); (3) PASR- promoter-associated sRNAs (< 200 nts); (4) TSSa

transcription start site-associated RNAs (20-90 nts); (5) TASR –terminator associated sRNAs (< 200 nts); (6) PARL - promoter-associated long RNAs (> 200 nts); (7) tiRNAs - tiny transcription-initiation RNAs (18 nts)

SAGE, CAGE, GRO tags

antisense RNAs (can be long)

CUTs, SUTs - cryptic unstable or stable unannotated transcripts (200-600 nts)

Jacquier, Nat.Rev.Genet., 2009

(52)

CUTs, SUTs, XUTs, MUTs and ALL THAT JAZZ

CUT = Cryptic Unstable Transcripts SUT = Stable Unannotated Transcripts SAT = Ssu72-associated Transcripts

XUT = Xrn1-dependent UnstableTranscripts MUT = Meiotic Unstable Transcripts

NO LONGER

TRANSCRIPTIONAL NOISE

(yeast, mammals, worms, plants - all organisms?)

•  not visible in normal wild-type cells

•  accumulate in RNA degradation mutants (EXOSOME, XRN family, TRAMP) or various metabolic conditions (aging, nutrient change, cell cycle etc)

•  originate from widespread bidirectional promoters

•  „mRNA-like” Pol II transcripts (capped, polyadenylated)

Jacquier, Nat. Rev. Genet., 2009

(53)

Tisseur et al., Biochemie, 2011

GENOMIC ORGANIZATION of ncRNA

short

long

(54)

Wyers et al., Cell, 2005; Arigo et al., Mol.Cell, 2006a; Thiebaut et al., Mol.Cell, 2006, 2008; Houseley et al., EMBO J, 2007; Camblong et al., Cell, 2007; Thompson and Parker, Mol.Cell. Biol., 2007; Houseley et al., Mol. Cell, 2008; Vasiljeva et al., Mol.Cell, 2008; Luke et al., Mol. Cell, 2008;

Berretta et al., Gene Dev., 2008; Preker et al., Science, 2008; Seila et al., Science, 2008; Xu et al., Nature, 2009; Neil et al., Nature, 2009

ncRNA instability and their termination mode

Unstable CUTs

- are detected in TRAMP or exosome mutants

- are terminated by Nrd1/Nab3-dependent mechanism and polyadenylated by Trf4/TRAMP

- Nrd1/Nab3, TRAMP and exosome complexes interact - some CUTs (SRG1, IGS1-R) are polyadenylated by Pap1

- some CUTs are exported to the cytoplasm (XUTs) and degraded by Xrn1

- ncRNP composition is largely unknown

(55)

PHYSIOLOGICAL FUNCTIONS of CUTs

Camblong et al., Cell, 2007; Wery et al., WIREsSMB’11

Similar PHO84 silencing occurs in aging yeast

Stabilization of as CUT leads to H3K18 deacetylation by Hda1 at PHO84 promoter Regulation of gene expression via antisense RNA and epigenetic modification:

PHO84 (inorganic phosphate transporter)!

(56)

PHYSIOLOGICAL FUNCTIONS of XUTs

Transcriptional silencing of the Ty1 transposon

Berretta et al., Gene Dev, 2008; Wery et al., WIREsSMB’11

directly or indirectly controlled by Set1

antisense TY1 XUT

•  polyadenylated Pol II transcript

•  antisense to TY1 promoter

•  degraded by cytoplasmic Xrn1

•  silences TY1 expression by promoting histone deacetylation and trimethylation (by Set1)

•  can act in-trans

(57)

Berretta and Morillon, Embo Rep. 2009

CUT transcribed in-cis, when stabilized, recruits chromatin modification enzymes (HDAC) to gene promoter

CUT transcribed from a distant locus, when stabilized, recruits chromatin modification enzymes (HTM) to inhibit transcrition

CUT ACTION in-cis or in-trans!

(58)

UNUSUAL ncRNAs: tRFs tRNA-derived RNA fragments

Thompson and Parker, Cell, 2009

Stress-induced enzymatic tRNA cleavage

(S. cerevisiae, D. melanogaster, A. thaliana, A. nidulans, human cell lines)

Selected agiogenin-derived 5’-tiRNAs with terminal oligoG at the 5’end

•  repress translation in vitro and in vivo

•  displace eIF4G/eIF4A from uncapped transcripts and eIF4F from m7G cap

•  trigger formation of stress granules (SGs)

•  translational repressor YB-1 contributes to tiRNA mediated repression

Ivan

ov et al, Mol Cell, 2011

(59)

UNUSUAL ncRNAs: tRFs tRNA-derived RNA fragments

•  > 17 short abundant tRFs (13–26 nts), generated by RNaseZ from mature (5’ and 3’ ends) and precursor (3’ trailer) tRNAs identified in the cytoplasm in prostate cancer cells. Lack of tRF1001 impairs cell proliferation.

•  Abundant Dicer-dependent tRFs (class I, from mature 3’ and 5’ ends) in HeLa moderately downregulate target genes.

•  Class II tRFs (from RNAseZ 3’ cleavage to Pol III termination, cytoplasmic) associate with Ago2–3. Function- regulation of silencing via differential

association with Ago proteins?

Haussecker et al., RNA, 2010 Cole et al., RNA, 2009

Lee et al., Gene Dev., 2009

(60)

TAKE-HOME MESSAGE

•  ncRNAs have house-keeping (translation, splicing, protein sorting, RNA processing) and regulatory functions

•  ncRNAs affect processes such as transcription (chromatin structure), RNA stability and translation

•  The majority of eukaryotic genomes are transcribed giving rise to a variety of RNAs

•  At least some of the “invisible” transcripts in some conditions form functional ncRNAs

•  These usually act in transcriptional silencing in-cis or in-trans by recruiting chromatin modifying enzymes

•  Defects in ncRNA level or activity correlate with

several diseases

(61)

rDNA silencing by pRNA and NoRC

Matthews and Olsen, Embo Rep., 2006;

Tucker et al., Cur. Op. Cell. Biol., 2010

NoRC – mammalian nucleolar remodeling complex which establishes and maintains heterochromatic state at

promoters of silent rDNA repeats (histone modifications and CpG methylation)

-   TIP5 TTF-I-interaction protein5 -   SnF2 ATP-dependent chromatin remodeler

other

-   TTF-1 transcription factor I

-   UBF upstream binding factor

-   DNMT DNA methyltransferase

-   HDAC1 histone deacetylase

(62)

rDNA silencing by pRNA and NoRC

ADDITIONAL SILENCING

•  pRNA binds at T

0

to rDNA promoter, independently of TTF-I and other proteins, forming a triplex

•  pRNA competes with TTF-I

•  rDNA/pRNA triplex recruits methyltransferase DNMT3b

•  this results in chromatin hypermethylation and rDNA silencing

Stark and Taliansky, Embo Rep., 2008; Mayer et al., Mol. Cell, 2006; Embo Rep., 2008; Schmitz et al., Gene Dev., 2010

•  NoRC function requires TIP5 association with pRNA

•  NoRC brings DNA and

histone modifying enzymes leading to hetrochromatin formation

•  CpG-133 methylation prevents binding of UBF

•  this inhibits formation of the transcription complex

pRNA processed to

Pol I intergenic

transcript

(63)

Kai and Pasquinelli, Nat.Str.Mol.Biol,2010

Cytaty

Powiązane dokumenty

Stosując interferencję RNA wykazano, że za pomocą siRNA może być wyciszona ekspresja zarówno endogennego, jak i transferowanego genu MDR1, co przywraca wrażliwość tych

In most cases of CM and MC due to PVB19 and HHV-6 infection, the virus was not eliminated but its load was reduced, with improvement of endothelial function and symptoms [14]..

The acute phase lasts for only a few days and can cause virus elimination from the heart and renovation of the dam- aged tissue (spontaneous improvement in 50–57%), lead to

Dane na temat występowania B-NHL u pacjen- tów z WZW typu B i C są niejednoznaczne. Część badaczy wskazuje na częstsze występowanie zaka- żeń HBV i HCV u chorych z B-NHL. Dotyczy

Wysunięto podejrzenie tłuszczowego zapalenia płuc. W celu potwierdzenia rozpoznania wykonano powtórną bronchofiberoskopię. W badaniu cyto- logicznym popłuczyn

Najcz ęstsze zaka żenia wirusowe u dzieci niezale ż- nie od rodzaju przeszczepienia to reaktywacje HSV (herpes simplex virus) we wczesnym okresie potransplantacyjnym oraz zaka

Szacuje się, że u biorców seropozytywnych, u których nie stosuje si ę pro filaktyki, ryzyko reaktywacji infekcji CMV w ci ągu pierw- szych 100 dni po alloSCT si ęga 80%, ale

Przy założeniu, że stosowany jest algorytm postępowania aktual- nie obowi ązujący w Polsce [15], ryzyko wyra żone w liczbie dni okienka diagnostycznego dla Ultrio Plus jest