• Nie Znaleziono Wyników

Wnioski

W dokumencie Index of /rozprawy2/11095 (Stron 171-181)

9. Podsumowanie

9.2. Wnioski

Zjawisko hydratacji gazów w środowisku wodnym jest procesem skomplikowanym ze względu na jej stochastyczny charakter oraz na złożoność i mnogość zjawisk i zachowań współtworzących ten proces. Ogólnie mówiąc zjawisko hydratacji jest przemianą fizyczną wody w specyficzną strukturę lodu katalizowaną substancją hydratotwórczą. Struktury krystaliczne wody wypełnione gazem są związkami niestechiometrycznymi, co dodatkowo komplikuje ich opis i wymaga poszukiwania nowych metod badawczych i obliczeniowych w celu poszerzenia wiedzy na ich temat.

Niniejsza dysertacja doktorska dostarczyła wielu cennych informacji w dziedzinie budowy aparatury pomiarowej dedykowanej do specyficznych badań. Potwierdziła równocześnie zasadność budowania nietypowych konstrukcji w celu zweryfikowania niektórych wyników z literatury oraz w celu ukazania nowych wyników niemożliwych do uzyskania za pomocą konwencjonalnego sprzętu. Rezultaty niniejszych badań potwierdzają wyniki innych autorów, a z uwagi na fakt, iż uzyskano je za pomocą nowej konstrukcji stanowiska badawczego, zwiększają ich wiarygodność. Nowe informacje dotyczące procesu nukleacji i aglomeracji rozszerzają wiedzę na temat całokształtu zjawiska hydratacji gazowej.

Wykonane w niniejszej pracy pomiary dostarczyły szereg odpowiedzi na temat zjawisk charakterystycznych dla procesu hydratacji oraz opis ich wspólnego oddziaływania. Z uwagi na ograniczenia techniczne przeprowadzanych doświadczeń, nie wszystkie zaobserwowane zachowania w poszczególnych etapach hydratacji możliwe były do

164 wyjaśnienia jakościowego i tym bardziej ilościowego, jednak zaznaczenie ich wykrycia (obecności) wyznaczyło kierunek dalszych badań oraz wskazało kierunki modyfikacji aparatury pomiarowej pozwalającej na rozszerzenie wiedzy ten temat.

165

Bibliografia

1. Lorenc M. i Warowny W. Doświadczalne metody badań hydratów gazowych. Wiertnictwo AGH. 1, II, 2011.

2. Lorenc M. Badanie usuwania siarkowodoru z gazu ziemnego z wykorzystaniem zjawiska hydratacji. AGH w Krakowie, praca zlecona na podstawie umowy nr CS/IE/09/74367 z dnia 27 lutego 2009r. 2014.

3. Gudmundsson J.S., Parlaktuna M. i Khokhar A.A. Storage of natural gas as frozen hydrate. SPE. 24924, 1992.

4. Gudmundsson J.S. Method and Equipment for Production of Gas Hydrates. Norwegian Patent No. 172080. 1990.

5. Sloan Jr. E.D. Clathrate Hydrates of Natural Gases. New York, NY, USA : Marcel Dekker,, 2006. 3rd edition.

6. Hammerschmidt E.G. Formation of gas hydrates in natural gas transmission Lines. Industrial & Engineering Chemistry. 26, 8, 1934.

7. McMullan R.K. i Jeffrey G.A. Polyhedral clathrate hydrates. IX. Structure of ethylene oxide hydrate. The Journal of Chemical Physics. 42, 8, 1965.

8. Mak C.W. i McMullan R.K. Polyhedral clathrate hydrates. X. Structure of double hydrate of tetrahydrofuran and hydrogen sulfide. The Journal of Chemical Physics. 42, 8, 1965. 9. Ripmeester J.A., i inni. A new clathrate hydrate structure. Nature. 325, 6100, 1987. 10. Ripmeester J.A. The role of heavier hydrocarbons in hydrate formation. Proceedings of

the AIChE Spring Meeting, Houston, Tex, USA. 1991.

11. Sloan Jr. E.D. i Mehta A.P. Structure H hydrate phase equilibria of methane + liquid hydrocarbon mixtures. Journal of Chemical & Engineering Data. 38, 4, 1993. 12. Sloan Jr. E.D. i Mehta A.P. Structure H hydrate phase equilibria of paraffins,

naphthenes, and olefins with methane. Journal of Chemical & Engineering Data. 39, 1994.

13. Udachin K.A., Ratcliffe C.I. i Ripmeester J.A. A dense and efficient clathrate hydrate structure with unusual cages. Angewandte Chemie. 40, 7, 2001.

14. Loveday J.S., i inni. Stable methane hydrate above 2 GPa and the source of Titan’s atmospheric methane. Nature. 410, 6829, 2001.

15. Chou I.-M., i inni. Transformations in methane hydrates. Proceedings of the National Academy of Sciences of the United States of America. 97, 25, 2000.

16. Yang L., i inni. Synthesis and characterization of a new structure of gas hydrate.

Proceedings of the National Academy of Sciences of the United States of America. 106, 15, 2009.

166 18. Carroll J. Natural gas hydrates, a guide for engineers. brak miejsca : Gulf Professional

Publishing, 2003.

19. Sloan Jr. E.D. Gas hydrates: review of physical/chemical properties. Energy & Fuels. 12, 2, 1998.

20. Koh C.A. Towards a fundamental understanding of natural gas hydrates. Chemical Society Reviews. 31, 3, 2002.

21. Sloan Jr. E.D. Clathrate Hydrates: The Other Common Solid Water Phase. Ind. Eng. Chem. Res. 39, 9, 2000.

22. Richardson H.H., Wooldridge P.J. i Devlin J.P. FT-IR spectra of vacuum deposited of clathrate hydrates of oxirane H2S, THF and ethane. J. Chem. Phys. 83, 9, 1985.

23. Nelson H., i inni. Deuteron magnetic resonance and dielectric studies of guest

reorientation and water dynamics in six clathrate hydrates containing ring-type guests. Journal of Non-Crystalline Solids. 407, 2015.

24. Cook J.G. i Leaist D.G. An exploratory study of the thermal conductivity of methane hydrate. Geophysical Research Letters. 10, 5, 1983.

25. Ashworth T., Johnson L.R. i Lai L.P. Thermal conductivity of pure ice and

tetrahydrofuran clathrate hydrates. High Temperatures-High Pressures. 17, 4, 1985. 26. Tse J.S. i White M.A. Origin of glassy crystalline behavior in the thermal properties of

clathrate hydrates: a thermal conductivity study of tetrahydrofuran hydrate. The Journal of Physical Chemistry. 92, 17, 1988.

27. Andersson O. i Suga H. Thermal conductivity of normal and deuterated tetrahydrofuran clathrate hydrates. Journal of Physics and Chemistry of Solids. 57, 1, 1996.

28. Komatsu H., i inni. Multiple adsorption resistance model for constituent molecular effects in hydrogen clathration kinetics in clathrate hydrate particles. Chemical Engineering Science. 108, 2014.

29. Tegze G., i inni. Multiscale approach to CO2 hydrate formation in aqueous solution: Phase field theory and molecular dynamics. Nucleation and growth. The Journal of Chemical Physics. 124, 2006.

30. Lubaś J. Doświadczalno-teoretyczne studium zjawisk powstawania i dysocjacji hydratów gazu ziemnego. Prace Instytutu Górnictwa Naftowego i Gazownictwa, Kraków. 117, 2002.

31. Anderson R., Tohidi B. i Webber J.B.W. Gas hydrate growth and dissociation in narrow pore networks: capillary inhibition and hysteresis phenomena. The Geological Society, London, Special Publications. 319, 2009.

32. Dai Sh., Lee J.Y. i Santamarina J.C. Hydrate nucleation in quiescent and dynamic conditions. Fluid Phase Equilibria. 378, 2014.

33. Fandiño O. i Ruffine L. Methane hydrate nucleation and growth from the bulk phase: Further insights into their mechanisms. Fuel. 117/A, 2014.

167 34. Talaghat M.R. Experimental investigation of induction time for double gas hydrate

formation in the simultaneous presence of the PVP and L-Tyrosine as kinetic inhibitors in a mini flow loop apparatus. Journal of Natural Gas Science and Engineering. 19, 2014.

35. Kishimoto M. i Ohmura R. Correlation of the Growth Rate of the Hydrate Layer at a Guest/Liquid-Water Interface to Mass Transfer Resistance. Energies. 5, 2012.

36. Anderson G.K. Enthalpy of dissociation and hydration number of methane hydrate from the Clapeyron equation. J. Chem. Thermodynamics. 36, 2004.

37. Mohammad-Taheri M., i inni. The role of thermal path on the accuracy of gas hydrate phase equilibrium data using isochoric method. Fluid Phase Equilibria. 338, 2013. 38. Brown T.D., Taylor Ch.E. i Bernardo M.P. Rapid Gas Hydrate Formation Processes:

Will They Work? Energies. 3, 2010.

39. Circone S., Stern L.A. i Kirby S.H. The Role of Water in Gas Hydrate Dissociation. J. Phys. Chem. B. 108, 18, 2004.

40. Shimada W., i inni. Texture Change of Ice on Anomalously Preserved Methane Clathrate Hydrate. J. Phys. Chem. B. 109, 12, 2005.

41. Melnikov V.P., i inni. NMR evidence of supercooled water formation during gas hydrate dissociation below the melting point of ice. Chemical Engineering Science. 71, 2012. 42. Vlasov V.A. Phenomenological Diffusion Theory of Formation of Gas Hydrate from Ice

Powder. Theoretical Foundations of Chemical Engineering. 46, 6, 2012.

43. Li Q., Liu Ch. i Chen X. Molecular characteristics of dissociated water with memory effect from methane hydrates. International Journal of Modern Physics B. 28, 10, 2014. 44. Lourdes M., i inni. Droplet-based millifluidics as a new tool to investigate hydrate

crystallization: Insights into the memory effect. Chemical Engineering Science. 123, 2015.

45. Thompson H., i inni. Methane hydrate formation and decomposition: Structural studies via neutron diffraction and empirical potential structure refinement. The Journal of Chemical Physics. 124, 2006.

46. Jones C.Y., Zhang J.S. i Lee J.W. Isotope Effect on Eutectic and HydrateMelting Temperatures in theWater-THF System. Hindawi Publishing Corporation Journal of Thermodynamics. 583041, 2010.

47. Alavi S. i Ripmeester J.A. Effect of small cage guests on hydrogen bonding of tetrahydrofuran in binary structure II clathrate hydrates. The Journal of Chemical Physics. 137, 2012.

48. Chou I-M., i inni. Transformations in methane hydrates. PNAS. 10.1073/pnas.250466497, 2000.

49. Yoshioki S. Identification of a mechanism of transformation of clathrate hydrate structures I to II or H. Journal of Molecular Graphics and Modelling. 37, 2012.

168 50. Prasad P.S.R., i inni. Effect of silica particles on the stability of methane hydrates. Fluid

Phase Equilibria. 318, 2012.

51. Radich J., i inni. Biochemical reaction and diffusion in seafloor gas hydrate capillaries: Implications for gas hydrate stability. Chemical Engineering Science. 64, 20, 2009. 52. Nunighoff K., i inni. Neutron experiments with cryogenic methane hydrate and

mesitylene moderators. The European Physical Journal A. 38, 2008.

53. Yang M., i inni. Characteristics of CO2 Hydrate Formation and Dissociation in Glass Beads and Silica Gel. Energies. 5, 2012.

54. Jerbi S., i inni. Rheological properties of CO2 hydrate slurry produced in a stirred tank reactor and a secondary refrigeration loop. International Journal of Refrigeration. 36, 4, 2013.

55. Wiejacha J. Pomiar własnosci reologicznych płynów nienewtonowskich. Laboratorium Przepływów Płynów i Mieszanin Wielofazowych, Zakład Aparatury Przemysłowej, Politechnika Warszawska, Wydział BMiP, Płock. 2002.

56. Kvenvolden K.A. Gas hydrates—geological perspective and global change. Reviews of Geophysics. 31, 2, 1993.

57. Lerche I. i Bagirov E. Guide to gas hydrate stability in various geological settings. Marine and Petroleum Geology. 15, 1998.

58. Makogon Y.F. Hydrate formation in gas bearing strata under perma frost. Gazov Prom-st. 5, 1965.

59. Martin A.I. Hydrate bearing sediments—thermal conductivity. M.S. thesis, School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Ga, USA. 2004.

60. Kvenvolden K.A. i Lorenson T.D. "The global occurrence of natural gas hydrate" in Natural Gas Hydrates, Occurrence, Distribution, and Detection. Geophysical Monograph, C.K. Paull and W. P. Dillon, Eds., American Geophysical Union,Washington, DC, USA. 124, 2001.

61. Collett T.S. Natural-gas hydrates; resource of the twenty-first century? Journal of the American Association of Petroleum Geologists. 74, 2001.

62. Yoon J-H., i inni. Transformation of Methane Hydrate to Carbon Dioxide Hydrate: In Situ Raman Spectroscopic Observations. J. Phys. Chem. A. 108, 23, 2004.

63. Schicks J.M. i Beeskow-Strauch B. The Driving Forces of Guest Substitution in Gas Hydrates—A Laser Raman Study on CH4-CO2 Exchange in the Presence of Impurities. Energies. 5, 2012.

64. Kvamme B., i inni. Effects of solid surfaces on hydrate kinetics and stability. The Geological Society, London, Special Publications. 319, 2009.

65. Thomas E. Clathrates: little known components of the global carbon cycle. Wesleyan University. 2004.

169 66. Chakoumakos B.C. Preface to the Clathrate Hydrates special issue. American

Mineralogist. 89, 2004.

67. Dartois E., i inni. Hydrogen sulfide clathrate hydrate FTIR spectroscopy: A help gas for clathrate formation in the Solar System? Icarus. 220, 2, 2012.

68. Carvajal-Ortiz H. i Pratt L.M. Influences of salinity and temperature on the stable isotopic composition of methane and hydrogen sulfide trapped in pressure-vessel hydrates. Geochimica et Cosmochimica Acta. 118, 2013.

69. Li X., Gjertsen L.H. i Austvik T. Hydrate Plug Properties Formation and Removal of Plugs. Annals of the New York Academy of Sciences, (www.blackwell-synergy.com - Gas Hydrates: Challenges For The Future). 912, 2000.

70. Li X., Gjertsen L.H. i Austvik T. Thermodynamic Inhibitors for Hydrate Plug Melting. Annals of the New York Academy of Sciences, (www.blackwell-synergy.com - Gas Hydrates: Challenges For The Future). 912, 2000.

71. Kawamura T., i inni. Dissociation Behavior of Pellet-Shaped Methane Hydrate in Ethylene Glycol and Silicone Oil. Part 1: Dissociation above Ice Point. Ind. Eng. Chem. Res. 45, 2006.

72. Fan S., i inni. Natural Gas Hydrate Dissociation by Presence of Ethylene Glycol. Energy & Fuels. 20, 2006.

73. Lorenc M. Wpływ metanolu na zawartość siarkowodoru w gazie ziemnym. Seminarium zakładowe, PGNiG w Warszawie Oddział w Sanoku. 2006.

74. Yamamoto Y., i inni. Effect of Inhibitor Methanol on the Microscopic Structure of Aqueous Solution. Annals of the New York Academy of Sciences, (www.blackwell-synergy.com - Gas Hydrates: Challenges For The Future). 912, 2000.

75. Østergaard K.K., i inni. Can 2-Propanol Form Clathrate Hydrates? Ind. Eng. Chem. Res. 41, 2002.

76. Lua H., i inni. Anion plays a more important role than cation in affecting gas hydrate stability in electrolyte solution? — a recognition from experimental results. Fluid Phase Equilibria. 178, 2001.

77. Majumdar A., Mahmoodaghdam E. i Bishnoi P.R. Equilibrium hydrate formation conditions for hydrogen sulfide, carbon dioxide, and ethane in aqueous solutions of ethylene glycol and sodium chloride. J. Chem. Eng. Data. 45, 2000.

78. Mahadev K.N. i Bishnoi P.R.J. Equilibrium Conditions for the Hydrogen Sulfide

Hydrate Formation in the Presence of Electrolytes and Methanol. The Canadian Journal of Chemical Engineering. 77, 1999.

79. Kelland M.A. History of the Development of Low Dosage Hydrate Inhibitors. Praca uczelniana - Uniwersytet Stavanger, Norwegia. 2005.

80. King Jr. H.E., i inni. Polymer conformations of gas-hydrate kinetic inhibitors: A small-angle neutron scattering study. Journal Of Chemical Physics. 112, 5, 2000.

170 81. Berner D., Gerwick B.C. i inni. Hydrates for transport of stranded natural gas. SPE.

84255, 2003.

82. Mork M. Formation rate of natural gas hydrate – reactor experiments and models.

Rozprawa doktorska - Norwegian University of Science and Technology, Deparment of Petroleum Engineering and Applied Geophysics. 2002.

83. Plantier F., i inni. Development of a new type of high pressure calorimetric cell, mechanically agitated and equipped with a dynamic pressure control system:

Application to the characterization of gas hydrates. Review of Scientific Instruments. 84, 125107, 2013.

84. Gudmundsson J.S., i inni. Hydrate concept for capturing associated gas. SPE. 50598, 1998.

85. Yang D., i inni. Kinetics of CO2 hydrate formation in a continuous flow reactor. Chemical Engineering Journal. 172, 1, 2011.

86. Mork M. i Gudmundsson J.S. Hydrate formation rate in a continuous stirred tank reactor: experimental results and bubble-to-crystal model. 4th International Conference on Gas Hydrates, Yokohama. 19-23 maj 2002.

87. Grim R.G., i inni. Rapid hydrogen hydrate growth from non-stoichiometric tuning mixtures during liquid nitrogen quenching. The Journal of Chemical Physics. 136, 2012.

88. Kamata Y. i inni. Hydrogen sulfide separation using tetra-n-butyl ammonium bromide semi-clathrate (TBAB) hydrate. Energy & Fuels. 19, 2005.

89. Warowny W. i Lorenc M. Hydraty w transporcie i magazynowaniu gazu ziemnego. Gaz, woda i technika sanitarna. 10, 2006.

90. Shiojiri K. A new process for the separation of condensable greenhouse gases by the formation of clathrate hydrates. VISION, (www.wscsd.org/ejournal/). 2004.

91. Elliot D.G. i inni. Proces for separating selected component from multi-component natural gas streams. 5,660,603 International Process Services, Inc., Houston, Tex., 26 sierpień 1997. US Patent.

92. Lee H. i inni. Method for separation of gas constituents employing hydrate promoter. 6,602,326 B2 Korea Advanced Institute of Science and Technology, 5 sierpień 2003. US Patent.

93. Hnatow M.A. i Happel J. Process and apparatus for separation of constituents of gases using gas hydrates. 5,434,330 1995. US Patent.

94. Spencer D.F. Methods of selectively separating CO2 from a multicomponent gaseous stream. 5,700,311 1997. US Patent.

95. Wong S. i Bioletti R. Carbon dioxide separation technologies. Carbon & Energy Management, Alberta Research Council, Edmonton, Alberta, T6N 1E4, Canada (www.aidis.org.br). 2002.

171 96. Motiee M. Estimate possibility of hydrate. Hydrocarb. Proc. 7, 70, 1991.

97. Towler B.F. i Mokhatab S. Quickly estimate hydrate formation conditions in natural gases. Hydrocarbon Processing. 84, 2005.

98. Kobayashi R., i inni. Petroleum Engineers Handbook. Society of Petroleum Engineers. 1987.

99. Sun R. i Duan Z. Prediction of CH4 and CO2 hydrate phase equilibrium and cage occupancy from ab initio intermolecular potentials. Geochim. Cosmochim. Acta accepted. 2005.

100. Kamath V.A. Study of Heat Transfer Characteristics during Dissociation of Gas Hydrates in Porous Media. Ph.D. Dissertation. University of Pittsburgh. 1984. 101. Sloan E.D. i Koh C.A. Clathrate Hydrates of Natural Gases. (third ed.) CRC Press,

Taylor & Francis Group, New York. 2008.

102. Rousseeuw P.J. i Leroy A.M. Robust Regression and Outlier Detection. John Wiley & Sons, New York. 1987.

103. Gramatica P. Principles of QSAR models validation: internal and external. QSAR Comb. Sci. 26, 2007.

104. Warowny W. Termodynamika układów gazowych. Oficyna Wydawnicza Politechniki Warszawskiej. 2015.

105. Li X-S., i inni. Hydrate dissociation conditions for gas mixtures containing carbon dioxide, hydrogen, hydrogen sulfide, nitrogen, and hydrocarbons using SAFT. The Journal of Chemical Thermodynamics. 39, 3, 2007.

106. Makogon Y.F. Hydrates of natural gas. PennWell Books. 1981.

107. Spontak R.J. Dedermination of volumetric properties for systems containing structure I gas hydrates. Industrial Engineering and Chemistry Process Design Development. 4, 25, 1986.

108. Sloan E.D. Clathrate hydrates of natural gases. Marcel Dekker Inc. New York, NY. 1990. 109. McCarthy V.N. i Jordan K.D. Structure and stability of the (H2O)21 and (H2O)20 •

(H2S) clusters: Relevance of cluster systems to gas hydrate formation. Chemical Physics Letters. 429, 2006.

110. Kini R.A., Dec S.F. i Sloan Jr. E.D. Methane + Propane Structure II Hydrate Formation Kinetics. J. Phys. Chem. A. 108, 2004.

111. Sloan Jr. E.D. COMMENTARIES, Clathrate Hydrates: The Other Common Solid Water Phase. Ind. Eng. Chem. Res. 39, 2000.

112. Uchida T., i inni. In Situ Observations of Methane Hydrate Formation Mechanisms by Raman Spectroscopy. Annals of the New York Academy of Sciences, (www.blackwell-synergy.com - Gas Hydrates: Challenges For The Future). 912, 2000.

172 113. Hutter J.L., King Jr. H.E. i Lin M.Y. Polymeric Hydrate-Inhibitor Adsorption

Measured by Neutron Scattering. Macromolecules. 33, 2000.

114. Dadvar M., i inni. The Wolf method applied to the type I methane and carbon dioxide gas hydrates. Journal of Molecular Graphics and Modelling. 38, 2012.

115. Wolf D., i inni. Exact method for the simulation of coulombic systems by spherically truncated, pairwise r−1 summation. Journal of Chemical Physics. 110, 1999.

116. Tanner M.R. Process for removig contaminants from a stream of methane gas. 4,409,102 Central Plants, Inc., Culver City, Calif., 11 październik 1983. US Patent. 117. Paulsen D.C. i inni. Removal of H2S and CO2 from a hydrocarbon fluid stream.

6,881,389 B2 EDG, Inc., Metairie, LA (US), 19 kwiecień 2005. US Patent.

118. Carroll J.J. Phase equilibria relevant to acid gas injection, Part 2 – Aqueous phase behaviour. www.gasliquids.com/papers.html. 41, 7, 2002.

119. Bulbul S., i inni. Hydrate Formation Conditions of Methane Hydrogen Sulfide Mixtures. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. 36, 2014. 120. Fitzgerald A. i Group British Gas. SPE Europe Conference, Aberdeen. 4-7 Sep., 2001. 121. Keβler T.R. i Zeidler M.D. NMR relaxation in the double clathrate hydrate

tetrahydrofuran/hydrogen sulfide. Journal of Molecular Liquids. 1-2, 129, 2006. 122. Lorenc M. i Warowny W. Odsiarczanie gazu ziemnego metodą hydratacji. Nafta-Gaz.

2, 70, 2009.

123. Program ChemCAD v5.6 - równanie stanu "Henry's Law".

124. Setzmann U. i Wagner W. A New Equation of State and Tables of Thermodynamic Properties for Methane Covering the Range from the Melting Line to 625 K at Pressures up to 1000 MPa. J. Phys. Chem. Ref. Data (webbook.nist.gov/chemistry). 6, 20, 1991. 125. Koszela J., Koszela-Marek E. i Sysak Z. Weryfikacja zmian ściśliwości wody i

roztworu soli NaCl pod wpływem wysokich ciśnień. Ofic. Wyd. PWr. 32, 2, 2008. 126. Wagner A. Pruss W. The IAPWS formulation 1995 for the thermodynamic properties

of ordinary water substance for general and scientific use. J. Phys. Chem. Ref. Data (webbook.nist.gov/chemistry). 2, 31, 2002.

127. Klapproth A., i inni. Structural studies of gas hydrates. Canadian Journal of Physics. 81, 1-2, 2003.

128. Benson B.B. i Krause Jr. D. A thermodynamic treatment of dilute solutions of gases in liquids. Journal of Solution Chemistry. 18, 9, 1989.

129. Gupta A. Methane hydrate dissociation measurements and modeling: the role of heat transfer and reaction kinetics. Rozprawa doktorska, Colorado School of Mines. 2007. 130. Handa Y.P. Compositions, enthalpies of dissociation, and heat capacities in the range 85

173 dissociation of isobutane hydrate, as determined by a heat-flow calorimeter. The

Journal of Chemical Thermodynamics. 18, 10, 1986.

131. Glew D.N. Aqueous nonelectrolyte solutions. Part XVIII. Equilibrium pressures of two methane hydrates with water. Formulae and dissociation thermo-thermodynamic functions for the structures I and II methane hydrates. Can. J. Chem. 80, 2002. 132. Glew D.N. Aqueous nonelectrolyte solutions — Part XX: Formula of structure I

methane hydrate, congruent dissociation melting point, and formula of the metastable hydrate. Can. J. Chem. 81, 2003.

133. Dharmawardhana P.B., Parrish W.R. i Sloan E.D. Experimental thermodynamic parameters for the prediction of natural gas hydrate dissociation conditions. Ind. Eng. Chem. Fundam. 19, 1980.

134. Parrish W.R. i Prausnitz J.M. (program ChemCAD v.5.6). Ind. Eng. Chem. Proc. Des. Develop. 11, 26, 1972.

135. Program ChemCAD v.5.6 - równanie stanu "Sour water". A New Correlation of NH2, CO2, and H2S Volatility Data from Aqueous Sour Water Systems by Grant M, Wilson, EPA-600/2-80-067, Grant No. R804364010.

136. Sakoda N. i Uematsu M. A Thermodynamic Property Model for Fluid Phase Hydrogen Sulfide. Int. J. Thermophys. (webbook.nist.gov/chemistry). 3, 25, 2004.

137. Goodall C.R. Computation Using the QR Decomposition, Handbook in Statistics. Elsevier/North-Holland, Amsterdam. 1993.

138. Carroll J.J. Problem is the result of industry's move to use higher pressures. Calgary, Alberta, Canada, (www.gasliquids.com/papers.html/). 2003.

139. Gudmundsson J.S. i Mork M. Stranded gas to hydrate for storage and transprot. International Gas Research Conference, Amsterdam. 5-8 listopad 2001.

140. Chatti I. Benefits and drawbacks of clathrate hydrates: a review of their areas of interest. Energy Conversation and Management. 46, 2005.

141. Ross R.G., Anderson P. i Backstrom G. Effects of H and Dorder on the thermal conductivity of ice phases. The Journal Chemistry Physics. 68, 9, 1978.

142. Stoll R.D. i Bryan G.M. Physical properties of sediments containing gas hydrates. Journal of Geophysical Research. 84, B4, 1979.

Załączniki

W dokumencie Index of /rozprawy2/11095 (Stron 171-181)

Powiązane dokumenty