• Nie Znaleziono Wyników

Two remarks about surfaces

N/A
N/A
Protected

Academic year: 2021

Share "Two remarks about surfaces"

Copied!
8
0
0

Pełen tekst

(1)

A C T A U N I V E R S I T A T I S L O D Z I E N S I S FO LIA M ATHEM ATICA 7, 1995

Władysław W ilczyński and Genowefa Rzepecka

T W O R E M A R K S A B O U T S U R F A C E S

It is show n th a t am ong co n tin u o u s fu n c tio n s defined on th e u n it sq u a re an d non-decreasing w ith resp e ct to each variab le se p a ra te ly th e re is n e ith e r a fun ctio n w ith th e g re a te st nor a fu n c tio n w ith th e sm a lle st su rface area.

We shall introduce th e following denotations. Let = { / : [0,1] —► [0,1] : / is a continuous,

non-decreasing function, / (0) = 0 and / (1) = 1} = {z : [0, l]2 —> [o, 1] : 2 is a continuous function,

2(0,0) = 0 and 2(1,1) = 1, z( x, y) is non-decreasing as a function of one variable!/

for each x 6 [0,1],

z ( x , y ) is non-decreasing as a function of one variable x

(2)

W e shall denote by L \ ( f ) th e length of a curve / 6 T \ a n d by L2(z ) th e area of th e surface z € T<i. Respectively |A |i will denote th e m easure of a linear set A C [0,1], \D\-i th e m easure of a p la n ar set B C [0,1] x [0,1]. It can be easily shown th a t T \ w ith th e m etric

P ( f i > h ) = sup |/ i ( x ) - f2( x )| *€[0,1]

is a com plete space. Also we can prove th a t T2 w ith th e m etric p ( z i , z 2) = sup \ zi(x, y) — z2(x, y)\

(x,y)e[o,i]2 is a com plete space. It is known th a t

sup L i ( / ) = 2, inf L i ( f ) = \ / 2

f £ T 1 l

w here least u p p er bou n d is reached by th e m ost of functions since { / (E T \ : L \ ( f ) = 2} is a residual set in T \ and g reatest lower b o u n d is reached for one function f ( x ) = x.

We shall recall some definitions concerning the surface areas. We say th a t th e continuous function P : [0, l]2 —» [0,1] defines a poly­ h ed ral if th e re exists a subdivision of [0, l]2 in to a finite n u m b er of non-overlapping triangles T i,T 2, ...,T „ such th a t

P ( x , y ) = ctiX -(- biy + c,- for (x , y ) E T i,i = 1,2, ...,n

w here a,i,bi,Ci are co n stan t coefficients for a fixed trian g le T*. T h e sum of th e areas of th e faces in the sense of elem entary geom etry i.e. th e num b er

r . + b ] + 1)2 =

i i

is called an elem entary area. Let F : [0, l]2 —> [0,1] be an y co n tin u ­ ous function defining a surface. By th e surface area L2(F ) we shall m ean th e lower lim it of elem entary areas of polyhedrals uniform ly

(3)

convergent to F, i.e. th e lower bou n d of all num bers .s such th a t for any e > 0 th ere exists a polyhedral P : [0, l]2 —► [0,1] such th a t for any ( x , y ) E [0, l]2 \P(x, y) - F ( x , y)| < c an d L2(p) < .s.

T h e variatio n of functions of two real variables in th e sense of Tonelli is defined in th e following way :

Let F : [0, l]2 —» [0,1] be any continuous function. For a.ny x E [0,1] let i0i(F , x, [0,1]) be th e to tal variation of F ( x , y), 0 < y < 1 as a function of y only. For any y E [0,1] let w2( F, y , [0,1]) be th e to ta l v ariatio n of F ( x , y),0 < x < 1 as a function of x only. B ecause of th e con tin u ity of F ( .r,y ) non-negative functions u>i(jF, x, [0,1]), io2( F , y , [0,1]) are lower sem icontinuous functions of variables x an d y respectively. W hen integrals

/ u ;i(F ,x ,[0 , l])<i.T and / w2(F, y, [0, l))dy

J o J o

are finite, function F is said to be of bounded variatio n in [0, l]2 in th e sense of Tonelli (B .V .T .). Hence we have im m ediately th a t any function of bounded variation of two variables ( x , y ) is a function of b o u n ded variatio n as a function of x for alm ost all y, an d it is a function of b ou nded variation as a function of y for alm ost all x.

O bviously for z E '2 we have

w i ( F , x , [0,1]) < 1 for any x E [0,1] and w2(F, y, [0,1]) < 1 for any y E [0,1] th u s I w i ( F , x , [0, l])cfo < 1 J o an d / w2( F , y, [0, l])dy < 1. Jo

By Tonelli theorem (1926) [see Cesari, p. 4] we have th a t if z E T2 th en

|[0,i]2|2 < £ 2(z) < | [ 0 ,i]2|2 + / « M J W i U D d z

Jo

+ [ w2( F, y , [0, l])dy < 3. Jo

(4)

Hence T h e o r e m 1. Proof. Let sup L2(z) < 3 an d inf £2(2) > 1. z e r 2 ze;F2 sup L2(z) = 3 Zn( x, y)

r ° <

X<

1

_

1

for

<

!

n

I

10

V

I

y<

1

n

1_

1r

1

1

<X

< 1

for

I

n

I

1 0

V

I

y<X

1r

1

__

1

<y

< 1

for \

1

n

1I

0

V

I

X<y

for any n G Af — {1}.

T h e n th e surface area of z n is equal to

L 2 {z n ) — ( 1 — — ) + 2 i + 1- i / T n ' 1 + ^ ’ so lim L ( z n ) = 3. n —>oc

Hence we have im m ediately su pzG^ 2 L2(z) = 3.

T h e o r e m 2. I f z € T2 then L2( z ) < 3. Proof. Let 2 € T 2. T hen obviously

0 < 2(0,0) < 2(1,0) < 2(1,1) = 1.

A t least one of the above inequalities m u st be proper. Suppose it is th e first one. T he proof in th e o th er case is analogous. T h u s we have 0 = 2(0,0) < 2(1,0). By th e p ro p erty of D arb o u x of th e

(5)

fun ctio n z(x, 0) we have easily th a t there is a po in t x0 6 [0,1] such th a t 0 < z ( x0, 0) < 1. T hen we have for x G [x0,1]

z ( x a, 0) < z ( x ,0).

Sim ultanously, as m ( z , x , [0,1]) = z(x, 1) - z( x, 0) so for x G [x0, 1] th e inequality w\ ( z , x, [0,1]) < 1 - 2(x o,0) < 1 holds. Hence J

«>,(*,*, [o ,1

])dx = J Wi ( z , x , [0, l]) r fx

+ /

wi ( z , x,

[0,

l])dx J X0 < X0 • 1 + (1 — £ 0)(1 - z ( x 0, 0 )) < 1 which im m ediately resu lts in th e inequality L2(z) < 3.

T h e o r e m 3. Proof. Let Z n ( x , y ) = < inf ¿2(2) = 1. z e r2 0 < x < 1 for < 0 < y < 1 y < 2- i - x 1 - 1 < x < 1 n x + n y - \- 1 — 2n for < " 2~ ^ ~ x < y < l for any n G N — {1} • r / x 1 /2rc2 + 1 L{Zn) ~ 1" w + V

(6)

T h e o r e m 4 . I f z £ T i then L^ ( z ) > 1.

Proof. Suppose th a t L2(z) = 1. T hen (see Saks p. 181, T heorem 8.1, a,b,c) as z G ^ 2 so

T h u s th e equalities hold. In p articu lar from

it follows th a t the subintegral function is alm ost everyw here equal to 1. Hence

so z ( x , y ) is absolutely continuous in th e sense of Tonelli (sh o rtly A .C .T .) so for alm ost all y0 £ [0 ,1], z ( x , y 0) is absolutely continuous as a function of th e variable y. Let

•Ei = { ( * ,» ) € [0, l]2 : = 0}

Ei

= {(*,!/) £ [

0

, l]2 : ~(x,s,) = o | .

We know th a t ¡ £ | | 2 = 1 an d \ E 2 \ 2 - 1- Let

(7)

w here ( E i y = {a- G [0,1] : x , y ) e E l } and A 2 = { x G [ 0 , l ] : | ( F 1) I | i = 1 } w here ( E 2 )x = { y € [0,1] : ( x , y ) G E 2 j .

O bviously |^4.i 11 = 1 and 1^4.2 |i = 1- Let

B i = {y G [0,1] : z ( x , y ) is a.c. as a function of x } B2 = {x G [0,1] : z(x, y ) is a.c. as a function of y} .

We know by A .C .T. th a t |Z?i|i = |B 2|i = 1. Let y £ A\ D B \ . T h en z( x, yQ) is a.c. since y0 G B i and for alm ost all x Q G [0,1] §f ( x , y 0) = 0 since y0 G A \ . Hence

(1) z ( l , y 0) ~ z (0, y o) = 0.

Let x0 G A2 n B 2. T hen z ( x 0, y) is a.c. since x0 G B2 an d for alm ost all y G [0,1] f f ( x 0,!/) = 0 since x0 G A 2. Hence

(2) z ( x o, l ) - z ( x o,Q) = 0 By (1) we have (3) z ( x , y 0) = z (0 ,y o) for all x G [0,1] an d by (2) we have (4) z ( x0, y ) = z ( l , y ) for all y G [0,1]. T h u s by (3) a n d (4) we have z (0 ,y0) = z ( x0, y 0) = z ( x0,1). T h u s ■2(0, Vo) — z ( x0,1).

Since \A\ D B \ \i = \A2 D B 2\\ = 1 thus A \ fl B \ is dense in [0,1] an d A i C\Bi is dense in [0,1]. We shall take th e sequence {xn }neA^ C A2 fl B2 an d such th a t x n tends to 1 increasingly an d th e sequence { yn } nejV C A\ fl B \ an d such th a t y„ tends to 0 decreasingly. We have z (0 ,y „ ) = z ( x n , 1) for any n G Af. By th e con tin u ity of th e function z ( x , y ) we have z (0,0) = z( 1,1), and th is co n trad icts th e fact th a t z(0,0) = 0 and z( 1,1) = 1.

(8)

Re f e r e n c e s [1] S. Saks, Theory of the integral, W arsaw , 1937. [2] L. C esari, Surface area, New York, 1965.

[3] L. T onelli, Sur la quadrature des surfaces, C .R . A cad. Sei. P a ris 1 8 2 (1926) 1198-1200.

Władysław W ilczyński i Genowefa Rzepecka

D W I E U W A G I O P O W I E R Z C H N I A C H

Pokazujem y, że wśród funkcji ciągłych określonych n a k w ad ra­ cie jednostkow ym i niem alejących ze względu n a każdą zm ienną nie istnieje ani funkcja o najw iększym , ani o najm niejszym polu pow ierzchni.

I n s titu te o f M a th e m a tic s Łódź U niversity ul. B an ach a 22, 90 - 238 Łódź, P o lan d

Cytaty

Powiązane dokumenty

Use the 690+ Quick Start (HA4700631) guide to set up the drive and Autotune the drive in the Closed Loop Vector mode. Set the desired Distance, Velocity &amp; Acceleration values,

2. First we prove the convexity of D.. Some remarks concerning elose-to-convex functions 49 In view of this fact, in order to determine D it is sufficient to solve the

Dwie uwagi o funkcjach typowo-rzeczywistych Две заметки о типично-вещественных

A Remark about the Surface of Lapunov Type 77 where the columnas of the matrix [flit/] are formed by the vectors e/ (j' = 1, .... By means of elementary calculations it may be

Ile wyniosły stopy procentowe w kolejnych kwartałach, jeśli wiadomo, że po roku pan Racisław odebrał 1200 zł, stopa procentowa w pierwszym kwartale była o połowę wyższa od

The radius of the circle circumscribing this triangle is equal to:A. The centre of the circle

(1 point) The sides of a rectangle has been measured to be 40cm and 50cm correct to the nearest 10cmA. The lower bound for the area of the rectangle is (select all

Ex- plosive mixtures of dust and air may form during transport (e.g. in bucket elevators) and during the storage of raw mate- rials such as cereals, sugar and flour. An explosion