• Nie Znaleziono Wyników

Statystyka Matematyczna, Egzamin, czerwiec 2016, UMK

N/A
N/A
Protected

Academic year: 2021

Share "Statystyka Matematyczna, Egzamin, czerwiec 2016, UMK"

Copied!
2
0
0

Pełen tekst

(1)

Statystyka Matematyczna, Egzamin, czerwiec 2016, UMK

1. Obserwujemy niezależne zmienne losowe X1, X2, X3, X4, X5, które po- chodzą z dwóch różnych rozkładów wykładniczych: X1, X2, X3 ∼ Ex(3θ), zaś X4, X5 ∼ Ex(θ), gdzie θ jest nieznanym parametrem.

(a) Znajdź jednowymiarową statystykę dostateczną T (X1, X2, X3, X4, X5).

(b) Podaj estymator największej wiarygodności parametru θ.

2. Niech X będzie zmienną losową o rozkładzie dwumianowym Bin(n, θ).

Rozważamy estymator nieznanego parametru θ dany wzorem θ =ˆ X + 1

n + 2.

(a) Oblicz obciążenie tego estymatora: Eθθ − θ.ˆ (b) Oblicz wariancję tego estymatora: Varθθ.ˆ

(c) Oblicz błąd średniokwadratowy tego estymatora: Eθθ − θ)2. 3. Niech X1, . . . , Xn będzie próbką z rozkładu normalnego N(µ, 1). Roz-

ważamy zadanie estymacji wielkości µ2 gdzie µ jest nieznanym para- metrem.

(a) Oblicz obciążenie estymatora µf2 = ( ¯X)2.

Wskazówka: Wiemy, że Var ¯X = E( ¯X)2+ (E ¯X)2. (b) Zaproponuj estymator nieobciążony µc2.

Wskazówka: Zmodyfikuj w odpowiedni sposób estymatorµf2. (c) Uzasadnij fakt, że µf2 jest asymptotycznie normalny, to znaczy

√n(µf2− µ2) → N(0, σ2) i oblicz asymptotyczną wariancję σ2.

1

(2)

4. Niech X1, . . . , Xn będzie próbką z rozkładu normalnego N(0, σ2), gdzie σ > 0 jest nieznanym parametrem (zwróć uwagę, że wartość oczekiwana jest znana, równa zero). Rozważamy zadanie estymacji parametru σ.

(a) Oblicz estymator największej wiarygodności ˆσ.

(b) Oblicz informację Fishera I1(σ) dla pojedynczej obserwacji X1. Wskazówka: Łatwiej skorzystać ze tego wzoru na informację Fi- shera, który zawiera drugą pochodną.

5. Rozważamy ten sam model co w zadaniu poprzednim: X1, . . . , Xn jest próbką z rozkładu normalnego N(0, σ2), gdzie σ > 0 jest nieznanym parametrem, wartość oczekiwana jest równa zero. Rozważamy zadanie testowania H0 : σ = 1 przeciw H1 : σ < 1.

(a) Skonstruuj test jednostajnie najmocniejszy (TJNM) H0 przeciw H1 na poziomie istotności α.

Wskazówka: Mamy tu rodzinę rozkładów z monotonicznym ilo- razem wiarygodności i można skorzystać z Twierdzenia Karlina- Rubina.

(b) Załóżmy, że n = 2 i zaobserwowaliśmy X1 = 1, X2 = 0.5. Oblicz P -wartość tego testu.

6. Na podstawie próbki z rozkładu normalnego N(µ, σ2) ze znaną warian- cją σ2 skonstruowano przedział ufności dla parametru µ na poziomie 0.95 i otrzymano wynik [80.40, 119.60].

(a) Podaj przedział ufności dla parametru µ na poziomie 0.99, obli- czony na podstawie tej samej próbki.

(b) Podaj jednostronny przedział ufności postaci (−∞, ¯µ] na poziomie 0.95, obliczony na podstawie tej samej próbki.

Poniżej podane są niektóre kwantyle standardowego rozkładu normal- nego N(0, 1):

Φ(z) 0.95 0.975 0.99 0.995 z 1.645 1.960 2.326 2.576

2

Cytaty

Powiązane dokumenty

Metody momentów i kwantyli (wszystkie podane tu zadania należy rozwiązać tymi dwoma metodami)..

Informacja Fishera, asymptotyczna normalność

W celu ustalenia, czy dotychczasowa norma użytkowania ubrań ochronnych (wyno- sząca 170 dni) nie jest zbyt wysoka, zbadano faktyczny okres ich użytkowania na przykładzie 64

Generuje po 1000 próbek przy użyciu każdego z generatorów, każda próbka o rozmiarze 1000.. Dla każdej z owych 3000 próbek przeprowadza test Kołmogorowa-Smirnowa,

Zweryfi- kuj hipotezę zerową H 0 mówiącą, że rozkład grup jest równomierny (to znaczy każda z grup ma jednakowe prawdopodobieństwo)... Wykorzystamy Mocne Prawo

Przeprowadzono obserwacje dotyczące wypadków drogowych na określonym terenie, spowodowa- nych w ciągu roku przez kierowców będących w

(nieznanych) parametrach opisujemy przy pomocy rozkładów prawdopodobieństwa, przy czym dodatkowa wiedza może wpływać na nasz

Estymator Bayesowski przy zadanej funkcji straty.. przedział