• Nie Znaleziono Wyników

The polynomial tensor interpolation

N/A
N/A
Protected

Academic year: 2022

Share "The polynomial tensor interpolation"

Copied!
5
0
0

Pełen tekst

(1)

THE POLYNOMIAL TENSOR INTERPOLATION

Grzegorz Biernat, Anita Ciekot

Institute of Mathematics, Czestochowa University of Technology, Poland, ciekot@imi.pcz.pl

Abstract. In this paper the tensor interpolation by polynomials of several variables is con- sidered.

Introduction

The formulas of tensor interpolation by polynomials of several variables are the unknow in the interpolation methods ([1]). Using the Kronecker tensor product of matrices ([2, 3]) the polynomial tensor interpolation formula was given in tis arti- cle.

1. The Kronecker product of matrices

The Kronecker product of two matrices A=aij and B=   of degrees re-bij spectivly m and n we define as a matrix given in block form as:

11 12 1

21 22 2

1 2

[ ]

m

m ij

m m mm

a B a B a B

a B a B a B

A B a B

a B a B a B

 

 

 

⊗ = = 

 

 

K K

M M O M

K

we denote the Kronecker product of A and B by AB. The Kronecker product is also known as the direct product or the tensor product.

Some properties for Kronecker products of two matrices:

1. The matrices ABand BAare orthogonaly similar, which means that square matrix U exists and BA=Ut

(

AB

)

U, UtU =I.

2. If A,B,C,D are square matrices such that the products AC and BD exist, then

C D

Α Β

( ⊗ )( ⊗ ) exist and

(AB C)( ⊗D)=ACBD (the “Mixed Product Rule”)

(2)

3.

( ) ( )

αA βB =αβ

(

AB

)

4.

(

AB

)

t =At Bt

5. If A and B are invertible matrices, then

(

AB

)

1=A1B1

6. det

(

AB

) (

= detA

) (

n detB

)

m

7. the

(

ab

)

rs element of the matrix AB is given by the product

(

ab

)

rs =aijbkl

where r=

( )

i1n+k , s=

(

j1

)

n+l.

Next, we consider the quadratic matrices

1 1 i j1 1

A = ( ) a  ,...,Ak = ( ) ak i jk k of de- grees respectivly n ,..,n and define the tensor product inductively: 1 k

(

k

)

k

k A A A A

A A

A12 ⊗...⊗ = 12 ⊗...⊗ 1 ⊗ for k≥3.

Some properties for Kronecker products:

1. The matrices Aσ( )1Aσ( )2 ⊗...⊗Aσ( )k and A1A2 ⊗...⊗Ak, where σ is any determine permutation of numbers 1,...,k, are orthogonaly similar. It means that square matrix U σ exists and Aσ( )1Aσ( )2...Aσ( )k =

( )

σ

σ A A ... A U

Ut ⊗ ⊗ ⊗ k

= 1 2 , UσtUσ =I.

2.

(

A1A2 ⊗...⊗Ak

)(

B1B2 ⊗...⊗Bk

) (

= A1B1

) (

A2B2

)

⊗...⊗

(

AkBk

)

pro- vided the dimensions of the matrices are such that the various expressions exist (the “Mixed Product Rule”).

3.

(

α1A1

) (

⊗ α2A2

)

⊗...⊗

(

αkAk

)

1α2...αk

(

A1A2 ⊗...⊗Ak

)

4.

( )

kt

t t t

k A A A

A A

A12 ⊗...⊗ = 12 ⊗...⊗ 5. if A ,..., A are invertible matrices, then: 1 k

( )

21 1

1 1 1 2

1A ⊗...⊗Ak =AA ⊗...⊗Ak

A

6. det

(

A1 A2 ...Ak

) (

= detA1

)

nˆ1n2...nk

(

detA2

)

n1nˆ2...nk...

(

detAk

)

n1n2...nˆk

where ˆn is omission. j

7. the

(

a1a2 ⊗...⊗ak

)

ij element of the matrix A1A2 ⊗...⊗Ak is given by the product

(

a a ... ak

) ( ) ( )

ij a ij a i j ...

( )

ak ikjk

2 2 1

1 2

1 2

1⊗ ⊗ ⊗ = , where:

(

i

)

nn nk

(

i

)

nn nk

(

ik

)

nk ik

i= 1−1 ˆ1 2... + 2−1 ˆ1ˆ2... +...+ 1−1 +

(3)

2. One of the property for Vandermonde’s matrix Consider the Vandermonde’s matrix:

( )









=

= +

+

p p p

p p

p p

p

X X

X X

X X

X X X X V V

K M O M M

K K

1 1 1 ,...,

,

, 1 1

0 0

2 1 0 1 1

of degree p+1.

The algebraic complement of the matrix Vp+1, has the form

( )

i j p j

(

i p

)

p

(

i p

)

ij X X X V X X X

D = −1 + τ 0,..., ˆ ,..., det 0,..., ˆ ,...,

where τpj

(

X0,...,Xˆi,...,Xp

)

design the fundamental symmetric τp j polynomial of the rank pj of variables X ,..., X ,..., X , and the symbol 0 ˆi p X means omitting ˆi the variable X (i τ0 =0). Similarly for Vandermonde’s determinant detV . p

This property we easly obtain on the one hand by evolving determinant

( )

<

+ = −









= k l p l k

p p p

p p

p X X

X X

X X

X X

V 0

1 1

0 0

1

1 1 1 det det

K M O M M

K K

according to i-th row, and on the other hand by sorting its value according toX i variable power.

In particular

( ) ( )

i

p i j

p j i

p

ij X X X

V D

Π

= −

+ +

,..., ,..., ˆ 1

det

0

1

τ where

( ) ( ) (

1

)(

1

) (

0

)

0 X X Xp Xi ... Xi Xi Xi Xi ... Xi X

i l i k

p l

k l k

i = − = − − − −

Π +

<

3. The polynomial tensor interpolation The coefficients matrix

[

aj...jk

]

1 of the polynomial interpolation

( )

=

k k

k

p k

j p j

j k j j j

k a X X

X X

W 1 0 ,...,0 ... 1

1 1

1

1 ...

,...,

or

(4)

are unknow. The results matrix

[ ( ) ( )

w1 i1...wk ik

]

=

[ ]

wi1...ik and the nodes matrix

( ) ( )

[

X1 i1×...× Xk ik

]

=

[

X1i1...Xkik

]

are know. The coefficients of the polynomial are determined from the linear system

[ ] [ ]

( ) [ ] [ ]

k k

k

k j j i i

j i j

i X veca vecw

X ... ...

1 1

1

1 ⊗...⊗ =

where the nodes matrix is the Kronecker product of Vandermonde’s matrices

[ ]

k

[ ]

kk

j p ki

j

p Xi V X

V +1= 11 ,..., +1=

1 1 , and the operator “vec” put coefficient matrix

[

aj1...jk

]

and results matrix

[ ]

wi1...ik in columns, attributing multiindexes j ...1 jk and ik

i ...1 properly positions

( )( ) ( ) ( )( ) ( )

( )

1 1 2 2 1 2

1

1 1 1 1 1 1

1 1

k k

k k k

ˆ ˆ ˆ

j j p p ... p j p p ... p

... j p j

= + + + + + + + +

+ + + +

and

( )( ) ( ) ( )( ) ( )

( )

1 1 2 2 1 2

1

1 1 1 1 1 1

1 1

k k

k k k

ˆ ˆ ˆ

i i p p ... p i p p ... p

... i p i

= + + + + + + + +

+ + + +

of the

jk

aj...

1 element in coefficients column and

ik

wi...

1 element in results column.

It means that we select ordering

1

2 1 1 1

00 00 00 01 00 0 0 1 00

0

k k k k

k k k k

... , ... , ..., ... p , ... p , ..., ...p p , ..., p ...p p , ..., p ...p p

with sequence shown above.

Then the searching coefficients column has a form

[ ]

aj jk

[ ]

Xji

[ ]

Xkijkk

(

DV DVk

)

tvec

[ ]

wi ik

vec ...

1

... 1 1

1 1

1 ...

det ... 1 det

1 ⊗ ⊗

=

where:

[ ]

k

[ ]

kk

j p ki

k j

p X i V V X

V

V1= +1= 11 ,..., = +1=

1

1 .

According to property 7’ we obtain the formula for coefficients

( ) ( )

k j V i j V i p

i p

i i i

j

j V

D V D w

a k k k

k

k k

k det

...

det 1

0 ,...,

0 ...

...

1 1 1

1

1 1

1 =

and because fractions shown above has got known form then:

(5)

( ) ( )

( )

1 1 1 1

1 1 1 1

1

10 1 1

0 0

1

0

1

k k k k

k k k k

k

p j i p

I J

j ... j i p ,..., i p i ...i

i

p j k ki kp

ki

X ,..., X ,..., Xˆ

a w

X ,..., Xˆ ,..., X ...

++ +

≤ ≤ ≤ ≤

= − τ

Π τ

Π

where: I+ =i1+...+ik, J+ = j1 +...+ jk and

(

1 1

) (

1 1 1

)(

1 1 1

) (

1 10

)

1i1= X p1Xi1... X i1X i1 Xi1X i1 ... Xi1X

Π +

(

kp ki

) (

... ki 1 ki

)(

ki ki 1

) (

... ki k0

)

ki X X X X X X X X

k k

k k k

k k

k = − − − −

Π +

And now the polynomial coefficient we can obtain numerically.

References

[1] Kincaid D., Chnej W., Numerical Analysis, Mathematics of Scientific Computing, The Univer- sity of Texas at Austin, 2002.

[2] Gantmacher F.R., The theory of matrices, Vol. 1, 2, Chelsea 1974.

[3] Lancaster P., Theory of Matries, Acad. Press 1969.

[4] Biernat G., Ciekot A., The polynomial interpolation for technical experiments, Scientific Re- search of the Institute of Mathematics and Computer Science, Czestochowa University of Tech- nology 2007, 1(6), 19-22.

Cytaty

Powiązane dokumenty

I ustawy stanowi, że "muzeum jest jednostką organizacyjni}, nic nastawioną na osiąganie zysku, której celem jest trwala ochrona dóbr kultury, informowanie o wartościach i

Pluralizm wartości opiera się na założeniu, że istnieje wiele ostatecznych i obiektywnych wartości, w których kierunku wolni ludzie dobro- wolnie podążają. Wartości te nie

Wydaje się jednak, że można go zastosować również do badania motywacji osób pracujących odpłatnie w organizacjach non-proi t.. Zbierając dodatkowe informacje

Kolumny pakowane napełnione są złożem zawierającym fazę stacjonarną w całej swojej objętości. Ten rodzaj kolumn jest najczęściej stosowany do preparatywnego

aktu, w drodze ustawy można tworzyć samorządy zawodowe, reprezentujące osoby wykonujące zawody zaufania publicznego i sprawujące pie- czę nad należytym wykonywaniem tych zawodów

Polega to na tym, że w momencie odbioru informacji oprogramowanie systemowe inicjuje wykonywanie funkcji OnReceive aplikacji równolegle do realizacji samej aplikacji: − jeśli

W rozprawie swej zajął się kwestią wykształcenia się jednolitego formularza umów o naukę rzemiosła w miastach włoskich w okresie przed pow­ staniem komun i

In fact, as hybrid vessels, the performance of a wind-assist design will depend on the contribution of the wind-propulsion system alongside the efficiency of the