• Nie Znaleziono Wyników

Analiza matematyczna - Przykładowe zestawy zaliczeniowe na I semestr

N/A
N/A
Protected

Academic year: 2021

Share "Analiza matematyczna - Przykładowe zestawy zaliczeniowe na I semestr"

Copied!
3
0
0

Pełen tekst

(1)

Analiza matematyczna - Przykładowe zestawy zaliczeniowe na I semestr

Ogólne informacje

Jak ogłaszałem na zajęciach - nie będzie egzaminu w I terminie. Wszyscy, którzy zaliczą ćwiczenia będą mieć przepisaną ocenę z ćwiczeń.

Wszyscy, którzy obleją ćwiczenia, ale bedą mieć wymaganą przez ćwiczeniowców liczbę obecności (u mnie trzeba być na chociaż jednym sprawdzianie lub dostarczyć zwolnienia lekarskie ze wszystkich - jak inni to robią, to ich sprawa) będą mogli pisać sprawdzianoegzamin poprawkowy w II terminie.

Jak podałem na wykładzie:

∙ Sprawdzian poprawkowy będzie pisemny, tylko w drugim terminie (pierwszym terminem są ćwiczenia).

∙ Trwać będzie mniej więcej 75-90 minut.

∙ Zestaw egzaminacyjny składa się z pięciu zadań: czterech „praktycznych” i jednego „teorety- cznego”. Zadania praktyczne polegają na wykorzystaniu umiejętności rozwiązywania zadań tego samego typu, co na ćwiczeniach. Nie jest wykluczone, że wśród tych zadań pojawią się się zadania z treścią, wymagające zastosowania wiedzy ekonomicznej. Zadanie teoretyczne opiera się na wiedzy z wykładu. Najczęściej wymaga podania wypowiedzi definicji lub twierdzenia (nie jest konieczne uczenie się takich definicji/twierdzeń na pamięć - można wypowiedzieć definicję lub twierdzenie własnymi słowami), a następnie wykazania się jego zrozumieniem przez podanie jego zastosowań ekonomicznych lub matematycznych przykładów spełniają- cych (lub nie) warunki tej definicji/twierdzenia.

∙ Termin sprawdzianu będzie ogłoszony na moodlu, kiedy tylko to będzie możliwe (po ogłosze- niu podziału zajęć na II semestr).

∙ Materiał sprawdzianu poprawkowego to wszystkie tematy omówione na wykładzie z analizy w I semestrze z wyjątkiem wykładu z całek nieoznaczonych. W szczególności zawiera on wszystkie wykłady „wstępne” (logika, teoria mnogości, funkcje elementarne i ich własności oraz relacje) oraz wykłady z właściwej analizy (wszystko o granicach i pochodnych funkcji jednej zmiennej rzeczywistej).

Na sprawdzianie poprawkowym można zdobyć 900 „małych” punktów. Z każdego zadania prak- tycznego można zdobyć 200 punktów, a za zadanie teoretyczne 100 punktów. Jeśli ktoś zdobędzie przynajmniej 450 punktów - otrzyma 8 punktów do egzaminu w II semestrze i 3,0 na koniec. Pozostali otrzymują 2,0 z kursu analiza 1 (i automatycznie, zgodnie z sylabusem, z kursu analiza 2).

Inne kwestie techniczne:

∙ Na sprawdzanie nie są dozwolone żadne pomoce dodatkowe poza przyrządami do pisania i kalkulatorem (nieprogramowalnym, niegraficznym). Kartki otrzymają Państwo na sali.

Wszystkie pozostałe rzeczy należy spakować i odłożyć w miejsce wskazane przez osoby pil- nujące na egzaminie. W szczególności, nie wolno mieć komórek/smartfonów i innych przed- miotów pozwalających na kontakt ze światem zewnętrznym (nie mówiąc o ściągach). Zła- manie tego przepisu może skutkować natychmiastowym usunięciem z sali i oceną niedostate- czną.

∙ Na sprawdzian należy przynieść jakiś dowód tożsamości (może być indeks) ze zdjęciem.

∙ Należy pamiętać, że aby zaliczyć kurs, należy posiadać nie tylko odpowiednią wiedzę i umiejęt- ności, ale też kompetencje społeczne. Dlatego należy dbać o to, by spełnić wymagania ich dotyczące z sylabusa.

∙ Termin wpisów będzie ogłoszony podczas egzaminu. Prawdopodobnie będzie to około tydzień później.

∙ Wyniki będą ogłoszone, jak tylko sprawdzian będzie poprawiony (zapewne 3-4 dni po sprawdzianie).

Ze względu na prawa ochrony dóbr osobowych, nie mogę ich podawać po nazwiskach, a nu- mery indeksu mi się zawsze mylą, dlatego każdy, kto chce mieć wyniki wcześniej powinien wymyślić jakiś „pseudonim artystyczny”, który zapisze obok imienia i nazwiska (czyli jakieś słowo, w miarę krótkie i cenzuralne). Według tych pseudonimów będą podane wyniki.

(2)

2

Poniżej prezentuję przykładowe zestawy zaliczeniowe. Nie wyczerpują one wszystkich typów zadań, które mogą się pojawić na zaliczeniu, ale wydaje się, że prezentują dobry przegląd materiału kursu i poziomu wiedzy, jakiego od Państwa oczekuję. W szczególności na pewno co najmniej jedno zadanie będzie związane z badaniem przebiegu zmienności funkcji. Poziom trudności zadań odpowiada poziomowi trudności zaliczenia (próbne mogą być ciut trudniejsze). Oczywiście, są zadania łatwiejsze i trudniejsze i poszczególne zestawy również nie prezentują tego samego poziomu trudności.

Dobrej zabawy!

Grzesiek Kosiorowski

Zestaw I 1. Obliczyć granice funkcji:

a) lim

𝑥→0+tg 𝑥 ln 𝑥, b) lim

𝑥→−∞(3−𝑥−𝑥1−𝑥22)2𝑥.

2. Dla funkcji 𝑓 (𝑥) = 𝑥2𝑥2−43 podać dziedzinę, przedziały w których funkcja jest jest rosnąca, malejąca, wyznaczyć ekstrema. Zbadać istnienie asymptot na końcach przedziałów określoności, podać równania tych asymptot.

3. W pewnym przedsiębiorstwie przeciętny przychód na jednostkę produkcji przy poziomie pro- dukcji 𝑥 opisuje funkcja 𝑃𝑝(𝑥) = 600𝑥−0,5+ 40 + 200𝑥−1. Obliczyć dla poziomu produkcji 𝑥0 = 900:

a) krańcowy przychód całkowity, b) elastyczność przychodu całkowitego i podać interpretację wyników.

4. Zbadać różniczkowalność w ℝ funkcji: 𝑓 (𝑥) = ∣𝑥∣𝑒−∣𝑥−1∣.

5. Sformułować wybrane twierdzenie o funkcjach ciągłych (twierdzenie Weierstrassa lub własność Darboux) i wyjaśnić związek tego twierdzenia z jego zastosowaniem w ekonomii (istnienie równowagi podaży i popytu lub paradoks Laffera). Podać przykład zjawiska ekonomicznego opisywanego przez funkcję nieciągłą.

Zestaw II 1. Obliczyć granice funkcji:

a) lim

𝑥→∞

√3𝑥2+ 2𝑥 − 5 − 𝑥√

3, b) lim

𝑥→0+

(tg𝑥2)ln 𝑥1 . 2. a) Sprawdzić, czy funkcja 𝑢(𝑥) =√

𝑥 + ln 𝑥 spełnia prawo Gossena dla 𝑥 > 0.

b) Za pomocą różniczki odpowiednio dobranej funkcji wyznaczyć przybliżoną (do 3 miejsc po przecinku) wartość liczby √4

16, 012.

c) Znaleźć równanie stycznej do krzywej: 𝑓 (𝑥) = 𝑒𝑥2−2 prostopadłej do prostej 𝑥 + 𝑦 + 7 = 0.

3. Dla funkcji 𝑓 (𝑥) = 12𝑥2+ 𝑥 + ln(3 − 2𝑥) + 1 podać dziedzinę, przedziały, w których funkcja jest rosnąca, malejąca, wklęsła, wypukła, wyznaczyć ekstrema i punkty przegięcia.

4. W pewnym zakładzie koszt całkowity 𝐾𝑐 jest funkcją wielkości produkcji 𝑥: 𝐾𝑐(𝑥) = 13𝑥4

1

2𝑥3− 2𝑥2+ 5𝑥. Przy jakiej wielkości produkcji 𝑥 koszt przeciętny produkcji jednego artykułu będzie najmniejszy? Obliczyć i zinterpretować elastyczność kosztu całkowitego dla wielkości produkcji 𝑥0 = 3.

5. Objaśnić pojęcie symbolu nieoznaczonego oraz wykazać (pokazując po dwa przykłady dla każdego symbolu), że symbole [∞ − ∞], [00] i [1] są nieoznaczone.

Zestaw III

1. Zbadać istnienie i podać równania asymptot poniższych funkcji na końcach ich przedziałów określoności:

𝑓 (𝑥) = 𝑥2− 4𝑥 + 1

𝑥 − 1 ; 𝑔(𝑥) = (𝜋 − 2 arctg 𝑥) ln 𝑥.

2. Dla funkcji 𝑓 (𝑥) = 𝑒𝑥−𝑥−12+𝑥 podać dziedzinę, przedziały, w których funkcja jest rosnąca, malejąca, wklęsła, wypukła, wyznaczyć ekstrema i punkty przegięcia.

3. a) Dla pewnych dwóch dóbr 𝑥, 𝑦 dana jest funkcja użyteczności konsumenta 𝑈 (𝑥, 𝑦) = 𝑥2(𝑦 − 1):

(3)

3

a1) Podać dwa inne elementy zbioru ℝ+× ℝ+ należące do tej samej klasy abstrakcji relacji obo- jętności co zestaw dóbr: (2, 9). Opisać algebraicznie i naszkicować w układzie współrzędnych tę klasę abstrakcji. Wskazać w tym układzie współrzędnych zbiór koszyków preferowanych przez tego konsumenta w stosunku do koszyka (2, 9).

a2) Zgodnie z relacją preferencji ≺ uporządkować od najmniej do najbardziej preferowanego przez konsumenta zestawy dóbr: (3, 3), (2, 7), (4, 2) (odpowiedź uzasadnić).

Uwaga: Zakładamy, że 𝑥 ≥ 0 i 𝑦 ≥ 0.

b) Dane są funkcje o wzorach 𝑓 (𝑥) = log1

2(5 − 𝑥), 𝑔(𝑥) =√

3𝑥 + 1. Podać wzór i dziedzinę funkcji odwrotnej do 𝑔 ∘ 𝑓 .

4. Dla jakich wartości parametru 𝑎 funkcja 𝑓 jest ciągła w 𝑥0 = 2?

𝑓 (𝑥) =

{𝑎𝑥2+ log4𝑥, dla 0 < 𝑥 ≤ 2 (𝑥2− 𝑥 − 1)𝑥2−41 , dla 𝑥 > 2 .

5. Sformułować definicję minimum i maksimum lokalnego funkcji jednej zmiennej oraz twierdzenie o warunku koniecznym istnienia ekstremum funkcji różniczkowalnej. Podać przykłady funkcji (lub wyjaśnić, dlaczego takie funkcje nie istnieją), które spełniają następujące zestawy warunków:

a) 𝐷𝑓 = ℝ, 𝑓 jest różniczkowalna w swojej dziedzinie, 𝑓(1) = 0 i funkcja 𝑓 nie posiada ekstremum dla argumentu 𝑥 = 1;

b) 𝐷𝑔 = ℝ, 𝑔 jest ciągła w swojej dziedzinie, 𝑔 ma minimum w 1 i nie jest prawdą, że pochodna 𝑔 w punkcie 1 jest równa 0;

c) 𝐷 = ℝ, ℎ jest różniczkowalna w swojej dziedzinie, ℎ(1) = 1 i funkcja ℎ posiada ekstremum dla argumentu 𝑥 = 1.

Cytaty

Powiązane dokumenty

cold – przeziębienie cough – kaszel cut – skaleczenie earache – ból ucha headache – ból głowy sore throat – ból gardła toothache – ból zęba tummy ache –

Cieszę się, że wykonaliście zadania na platformie. Jednocześnie chcę Wam zwrócić uwagę, abyście stosowali się do ustalonych zasad. Niektórzy zapomnieli

Aby uzyskać zaliczenie należy zdobyć co najmniej 31 punktów w sumie z czterech sprawdzianów i zaliczyć 4 sprawdziany (przez zaliczony sprawdzian rozumiemy taki, w którym

Podać przykład funkcji dwukrotnie różniczko- walnej dla której warunek konieczny istnienia punktu przegięcia nie jest warunkiem wystarczającym (prezentacja 5, slajd 24-28,

Projekt jest to przedsięwzięcie, na które składa się zespół czynności, które charakteryzują się tym, że mają:.. 

Zwracając się do wszystkich, Ojciec Święty raz jeszcze powtarza słowa Chrystusa: „Bóg nie posłał swego Syna na świat po to, aby świat potępił, ale po to, by

Zdający posługuje się dość bogatym zasobem środków językowych (leksykalnych, gramatycznych, ortograficznych) [...]2.

Zdający posługuje się dość bogatym zasobem środków językowych (leksykalnych, gramatycznych, ortograficznych) [...]..