• Nie Znaleziono Wyników

c) Dla 136 Cs, nie będącego produktem rozpadu beta, lecz powstającego bezpośrednio przy rozszczepieniu:

Mpai (136

Cs) =Mu x 136/235 Y

m

Fcs [1 - exp (-X(

136Cs)x]

Otrzymane wielkości przedstawia tabela 4.9. Po przemnożeniu masy poszczególnych nuklidów zawartej w paliwie przez ich frakcje uwolnienia do szczeliny^ otrzymamy (tabela 4.7):

Podstawiając do wzoru (3.1) współczynniki z tabeli 3.2 oraz dane charakterystyczne dla prętów typu WWER-1000, tj. p = 11,2 MPa, V

geom

= 5,81 cm

3

, A

acz

= 239,5 cm

2

i 7trozerwania)= 900°C,p

zew„ = 0,1 MPa, otrzymamy VB = 5,81 x 11,2/0,1 = 650,5 cm3

oraz frakcję uwohiioną natychmiast po rozerwaniu koszulki:

/B = MB( C S ) / M0( C S )

= 3,49 x 650,5 (0,05/239,5)

0>8

exp (-7420/1173) / 0,05 = 0,1617

Uwolnienia cezu w drodze dyfuzji ze szczeliny w ciągu następnej minuty określamy podstawiając do wzoru (3.2, 3.3) parametry określone przez Lorenza w tab. 3.2 oraz dane charakterystyczne dla AUCH w reaktorach WWER, mianowicie szerokość szczeliny W = 32,5 um, ciśnienie/? = 0,1 MPa, t- 1/60 h. Przyjmujemy, że temperatura szczeliny w tym okresie wynosi T- 1200°C.

Wówczas:

Ro = 1,9 x 103 x 32,5/0,1 x 1,09 x 10'3 exp (- 19800/1473)

/D =MD(Cs)/A/0(Cs) = 1 - exp (-3,83 x \0A 160 / 0,05) = 5,95 x 10"4 Powyższe wielkości zestawiono w tabeli 4.10.

Łącznie frakcja zasobu cezu w szczelinie wydzielona w ciągu 1 minuty po rozerwaniu koszulki i wzroście temperatury do 1200°C (w szczelinie) wyniesie/(Cs, wyp) =/B +fo = 0,1623.

Jod, paliwo wypalone

Frakcję jodu wydzielonego z paliwa wypalonego obliczamy według tej samej metodyki, tj. dla nuklidów 1 3 M 3 5I z aktywności zawartej w paliwie, a dla l 2 9I (X - 1,37 x 10"15 s"1) i trwałego

ITT

I z wydajności na 1 akt rozszczepienia. Uzyskaną masę przedstawia także tabela 4.9.

Odpowiednie frakcje jodu uwolnione na zewnątrz pręta wyniosą, po podstawieniu do wzorów (3.1)-(3.3):

fB = 0,2600; fD = 0,00174; fu = 0,2617

Tabela 4.10. Uwolnienia izotopów jodu i cezu ze szczeliny pod koszulką według wzorów Lorenza (3.1) - (3.3) Założenia:

grubość szczeliny 32,5 mm;

ciśnienie gazu 11,2 MPa (paliwo wypalone), 9,74 MPa (paliwo świeże);

ciśnienie zewnętrzne 0,1 MPa;

objętość gazowa 5,81 cm3 * 11,2/0,1 = 650,5 cm3 (paliwo wypalone); 5,81 * 9,74/0,1 = 565,7 cm3 (paliwo świeże);

temperatura rozerwania 900°C = 1173 K;

temperatura dyfuzji 1200°C = 1473 K;

masa jodu i cezu wg tabel 4.8 - 4.9.

Pierwiastek Paliwo świeże

I (127 + 129 + 131 + 132 + 133 + 134 +135)

Cs (133 + 134 + 135 + 136 + 137) Paliwo wypalone

I Cs

Uwolnienie

natychmiastowe fę Uwolnienie dyfuzyjne

fn, min'1 Uwolnienie łączne po 1 minfu 0,9205

0?7889

7,08 x io"J i 3,33 x 1O'J

0,9276 0,7922 0,2600

0r1617

1,74 x 10°

5,95 x 10"* 0,2617 0,1623

Paliwo świeże

Dla paliwa świeżego przyjęto frakcje uwolnień do szczeliny, uzyskane przez Pawlenkę [44] dla rozszczelnionych prętów paliwowych. W paliwie nie utlenionym będą to wartości oczywiście zawyżone (patrz rozdział 4.3), niemniej jednak ze względów bezpieczeństwa przyjmiemy je do obliczeń. Wówczas:

M0(I) = 5,3xl0-g(tab.4.8);

i frakcje uwolnień z pręta paliwowego otrzymane według (3.1) - (3.3) przy/? = 9,74 MPa i

= 565,7 cm3 wyniosą:

/„(I) = 0,928;

/„(Cs) = 0,79.

Stałe produkty rozszczepienia

Dla stałych produktów rozszczepienia (Sr, Eu, Ba, Ce) przyjmiemy fu = 1 0 "

telluru przyjmujemy/, = 1/40 zgodnie z kodem CORSOR [61].

6. Przy powyższych założeniach uzyskano wyniki podane w tabelach 4.11 i 4.12.

Tabela 4.11. Wydzielenie produktów rozszczepienia z wypalonego paliwa WWER-1000 podczas awarii z utrzymaniem paliwa w temperaturze 1400°C przez 60 s

W przypadku

1,92 >ApjJ

3,8 x

J& (tab. 4.31 0,024

Tabela 4.12, Wydzielenie produktów rozszczepienia ze świeżego paliwa WWER-1000 podczas awarii z utrzymaniem paliwa w temperaturze 1400°C przez 60 s

Nuklid

LITERATURA

[I] US NRC 1981 Technical Bases for Estimating Fission Product Behavior During LWR Accidents. NUREG-0772.

[2] Lorenz R.A. i in.: Fission Product Release from Highly Irradiated Fuel. NUREG/CR-0722, 1980.

[3] Bessman T.M., Lindemer T.B.: Chemical Thermodynamics of the System Cs-U-Zr-H-I-O in the LWR Fuel-Clad Gap. Nucl. Technol. 40, 1978, s. 297 - 305.

[4] Lewis B.J. i in.: Release of Iodine and Noble Gas Fission Products from Defected Fuel Elements During Reactor Shutdown and Start-up. Nucl. Techn. 92 (3), 1990.

[5] Lewis B.J. i in.: A Model for Fission Gas Release and Fuel Oxidation Behaviour for Defected UO2 Fuel Elements. J. Nucl. Mat., 1990.

[6] Leech W.J., Kaiser R.S.: The Effects of Fission Gas Release on PWR Fuel Rod Design and Performance. Proc. of IAEA Specialists' Meeting on Water Reactor Fuel Element Performance Computer Modelling, Blackpool, UK, March 16 - 21, 1980, IWGFPT-7, s.

173 - 179.

[7] MATPRO - Version 11: A Handbook of Materials Properties for Use in the Analysis of Light Water Reactor Fuel Rod Behavior. TREE-1280, NUREG/CR-0497, 1979.

[8] Weisman J. i in.: Fission Gas Release from UO2 Fuel Rods with Time Varying Power Histories. Trans. ANS 12, 1969, s. 900 - 901.

[9] Appelhans A.D.: The Measured Temperature, Power and Burnup Dependence of Radioactive Fission Gas Release in LWR Fuel. HWR-40, OECD Halden Project Report,

1981.

[10] Hunt C.E. i in.: Release of Short Lived Fission Products from Operating Fuel under Oxidizing Conditions. AECL-8564,1984.

II1] Lanning D.D., Cunningham M.E.: Behaviour of IFA-527 (Xenon Filled) Rods Before and After Pressure Boundary Failure. HPR-287/8, 1981.

[12] Hastings U . i in.: Transient Fission Product Releases During Dryout in Operating UO2 Fuel, WRSIM, 1983, s. 150 - 161.

[13] Collins R.D. i in.: Air Cleaner for Reactors with Vented Containment. TRG Report 1318, 1967.

[14]Osetek D.J. i in.: Fission Product Behavior During the First Two PBF Severe Fuel Damage Tests. Proc. of ANS Topical Meeting "Fission Product Behavior and Source Term Research", Snowbird, Utah, July 15, 1984.

[15] Lewis B.J. i in.: A Model for the Release of Radioactive Krypton, Xenon and Iodine from Defective UO2 Fuel Elements, Nucl. Technol. 73 (1), 1986.

[16] Hunt C.E., Lipsett J.J., Hastings I.J.: Release of Short-Lived Fission Products from Operating UO2 Fuel under Oxidizing Conditions. Proc. of ANS Topical Meeting "Fission Product Behavior and Source Term Research", Snowbird, Utah, July 15, 1984.

[17] Turnbułl J.A. i in.: The Diffusion Coefficient of Gaseous and Volatile Species During the Irradiation of UO2. J, Nuci. Mat. 107, 1982, s. 168 - 184.

[18]Prussin i in.: Release of Volatile Fission Products from UO2. Proc. of ANS Topical Meeting "Fission Product Behavior and Source Term Research", Snowbird, Utah, July

15, 1984.

[19] JIy3aHOBa JI.M., GnaBurHH IL/L: BWXOA pajmoaKTHBHbix npoayKTOB flejiemw H3 HerepMeTHHHBix TBSJIOB Ha ocHOBe cneneHHOH jtByoKHCH ypaHa. HA3-3723/4, 1983.

[20] Seveon H. i in.: Release of Fission Products by Defective PWR Fuel. Proc. of 5th International Meeting on Thermal Nuclear Reactor Safety, KfK 3880, 1985.

[21] Andriesse CD.: Melting Nuclear Fuel. KEMA Scientific and Technical Reports, Vol. 3, No. 7, 1985.

[22] Method for Calculating the Release of Fission Products from Oxide Fuel. Background and Derivation of ANS 5.4 Standard Fission Product Release Model. NUREG/CR-2507,

1982.

[23] Appelhans A.D., Turnbull J.A.: The Measured Release of Radioactive Xe, Kr and I from UO

2

Fuel at Typical LWR Conditions and a Comparison with Release Models. OECD Halden Reactor Project, 1981.

[24] riaBneHKO B.H., MapKyuieB B.M., THMauiOB B.B.: MeTOflHica pacqeTa Bbixoaa npoflyKTOB fffineimsi H3 HerepMeTHHHbix TBSJIOB C TonjiHBOM Ha ocHOBe UO2.

HA3-5137/11, 1990.

[25] Vitanza C , Sheppard D., HPR-229, Vol. 1, 1979.

[26] Rising K.H. i in.: A State of the Technology Assessment. HBEP-81 (1P1), 1982.

[27]Hoffinan J.P., Coplin D.H.: The Release of Fission Gases from Uranium Dioxide Pellet Fuel Operated at High Temperatures. GEAP-4596, 1964.

[28] Lewis W.B.: Engineering for the Fission Gas in UO

2

Fuel. Nucl. Appl. and Technol.

2 (2), 1966, p. 171.

[29] Cox CM., Hofinan F.J.: Performance Analysis of a Mixed Oxide LMFBR Fuel Pin. Nucl.

Appl. and Techn. 9 (3), 1970, s. 317 - 325.

[30] Williamson H.E., Ditmore D.C.: Current BWR Fuel Design and Experience. Reactor Techn. 14(1), 1971.

[31] Beyer C.E., Hann C.R.: Prediction of Fission Gas Release from UO

2

Fuel. BNWL-1875, 1974.

[32] Beyer C.E.: Fission Gas Release Data Evaluation - Published Data. HBEP-10 (1P2), 1982.

[33] Bradley E.R. i in.: An Evaluation of the In-Pile Pressure Data from Instrumented Fuel Assemblies IFA-431 and IFA-432. NUREG/CR-1139, PNL-3206, 1979.

[34] Beyer C.E., Meyer R.O.: Semiempirical Model for Radioactive Fission Gas Release from UO

2

. Trans. ANS 23, 1976, s. 172.

[35] Booth A.H.: A Method of Calculating Fission Gas Diffusion from UO

2

Fuel and its Application to the X-2-f Loop Test. AECL-496.

[36] Bellamy R.G., Rich J.B.: Grain-Boundary Gas Release and Swelling in High Burnup Uranium Dioxide. J. Nuci. Mat. 33 (1969), s. 64 - 76.

[37] Osetek D J . i in.: Behaviour of Fission Products Released from Severely Damaged Fuel During the PBF Severe Fuel Damage Tests. Proc. of 5th International Meeting on Thermal Nuclear Reactor Safety, KfK 3880, 1985.

[38] Appelhans A.D. i in.: Effects of Burnup on Fission Product Release and Implications for Severe Fuel Damage Events. Proc. of ANS Topical Meeting "Fission Product Behavior and Source Term Research", Snowbird, Utah, July 15, 1984.

[39] Speight M.V.: A Calculation of the Migration of Fission Gas in Material Exhibiting Precipitation and Re-Solution of Gas Atoms under Irradiation. Nucl. Sci. Eng. 37 (2),

1969, s. 180.

[40]Nakajima T., Saito H.: Analysis of Fission Gas Release from UO

2

Fuel During Power Transients by FEMAXI-IV Code. Proc. of IAEA TC Meeting on Water Reactor Fuel Behaviour and Fission Products Release in Off-Normal and Accident Conditions, Vienna, Nov. 1 0 - 1 3 , 1986, IAEA-TC-579.

[41] Maraniello G.S., Robino R.: A Microstructure-Dependent Fission Gas Release Model of UO

2

Fuel,w:HPR-287.

[42] Tasooji A., Gehl S.: A Simple Model for Predicting Fission Gas Release in LWR Fuel

Rods. Proc. of ANS Topical Meeting "Fission Product Behavior and Source Term

Research", Snowbird, Utah, July 15,1984.

[43]Dollins C.C., Nichols F.A,: Swelling and Gas Release in UO2. Proc. of ANS Topical Meeting "Fission Product Behavior and Source Term Research", Snowbird, Utah, July

15, 1984.

[44] IlaBJieHKo B.H.: HaiconJieHHe npoayicTOB n&iemisi B TBSJiax B l i y peaicropa MAPHJI ffjin npoBeaeHHfl HCCJieaoBaHHti. HA3 HM. H.B.Kyp^axoBa, HHB.

Ns 60/095, 1990.

[45] Rest J.: The Mechanistic Presdiction of Fission Gas, Iodine, and Cesium Release from LWR under Degraded Core Accident Conditions. Proc. of ANS Topical Meeting "Fission Product Behavior and Source Term Research", Snowbird, Utah, July 15, 1984.

[46] IlaBJieHKO B.H.: BHXO,E( npoflyioroB aejieHJw H3 pa3repMeTH3HpoBaHHbix onbiTHbix TB3noB BB3P Ha B l i y peaKxopa MAPHK npH npoBe«eHHH HcnwTaHHH. H A 3 HM.

H.B.KypnaTOBa, HHB. JVS 60/790, 1991.

[47] Chalder G.H. i in.: The Fabrication and Properties of Uranium Dioxide Fuel. Proc. of 2nd UN International Conference on the Peaceful Uses of Atomic Energy, Geneva, 1958, Vol. 6, s. 590 - 604.

[48] Eichenberg J.D. i in.: Effects of Irradiation on Bulk Uranium Dioxide, Proc. of Fuel Elements Conference, Paris, Nov. 18-23, 1957, TJJD-7546, s. 616 - 716.

[49]Aronson S., Clayton J.C, Rulli J.E., Padden T.R.: Surface Areas of Sintered UO2 Compacts. WAPD-BT-19,1960, s. 83 - 92.

[50] Lastman B. Pa#Hau;HOHHbie aaneHHH B ^ByoKHCH ypaHa. M.: ATOMH3^aT, 1964.

[51]Hoffinan H.: Crack Formation, Crack Healding and Porosity Redistribution During Irradiation of UO2 and (U, Pu)O2. J. Nucl. Mat. 54, 1974, s. 9 - 23.

[52]Kaneda K. i in.: Fission Gas Release of Mixed Oxide Fuel. Proc. of Enlarged Halden Program Group Meeting on Fuel Performance, Experience and Analysis, Sanderstollen, Norway, Mar. 2-7, 1986.

[53] El-Genk M.S., Kumar R.M., Croucher D.W.: An Analysis of Prompt Fission Gas Release form a Cladding Breach. Nucl. Technol. 60 (2), 1983, s. 291 - 303.

[54] Albrecht H. i in.: Release of Fission and Activation Products During LWR Core Meltdown. Nucl. Technol. 46 (3), 1979, s. 559 - 565.

[55] Lorenz R.A. i in.: Fission Products Release from Highly Irradiated Fuel Heated to 1300 -1600°C in Steam. NUREG/CR-1386, 1980.

[56] RasmussenN. i in.: Reactor Safety Study. WASH-1400, 1975.

[57] Clement CF. i in.: Fission Product Behaviour. ND-R-610 (S)

[58] Malinauskas A.P. i in.: LWR Source Terms for LOCA and Core Melt Accidents. Proc. of 7th WRSRI Meeting, Gaithersburg, USA, Nov. 5 - 7, 1979.

[59] Lorenz R.A. i in.: Fission Product Source Terms for the LWR LOCA. NUREG/CR-1288, 1980.

[60] C3B: PyKOBO#CTBO no KJiaccHtpHicauHH H oueHice paanauHOHHbix noaieflCTBHH aBapHHHbix CHTyauHH CB5»aHHbix c noTepeił TenjiOHOCHTena Ha A3C c BB3P.

OPB-15, MocKBa, 1983.

[61] Lorenz R.A.: Status of Validation of the CORSOR Computer Code Used for the Accident Source Term Reassessment Study. In: ORNL-TM-8842, 1985.

[62] Parker G.W. i in.: Out-of-Pile $tudies of Fission Product Release from Overheated Reactor Fuels at ORNL, 1955 - 1965. ORNL-3981, 1967.

[63] Andriesse CD., Tanke R.H.J.: Dominant Factors in the Release of Fission Products from Overheated Urania. Nucl. Technol. 65 (3), 1984, s. 415 - 421.

[64] Peehs M. i in.: Cs and I Source Terms of Irradiated UO2. Proc. of ANS Topical Meeting

"Fission Product Behavior and Source Term Research", Snowbird, Utah, July 15, 1984.

[65] Kelly B.T.: Irradiation Damage in Solids. Pergamon Press, 1966.

[66] Hobbins R.R. i in.: An Overview of Fision Product Release Experiments. Proc. of ANS Topical Meeting "Fission Product Behavior and Source Term Research", Snowbird, Utah, July 15, 1984.

[67] Strain R.V. i in.: Fission Product Release from Irradiated LWR Fuel under Accident Conditions. Proc. of ANS Topical Meeting "Fission Product Behavior and Source Term Research", Snowbird, Utah, July 15, 1984.

[68] Parker G.W., Barton C.J.: Fission Product Release. In: The Technology of Nuclear Reactor Safety, Vol. 2, MIT Press, Cambridge, 1983.

[69] Albrecht H., Matschoss V., Wild H.: Experimental Investigation of Fission and Activation Product Release from LWR Fuel Rods at Temperatures Ranging from 1500 - 2800°C.

Proc. of IAEA Specialists' Meeting on the Behaviour of Defected Zirconium Alloy Clad Ceramic Fuel in Water Cooled Reactors, Chalk River, Ontario, Sept. 17 - 21, 1979, IWGFPT-6, s. 141 - 146.

[70]Mathiot A., Le Marios G., Warlop R.: Analysis of Fission Product Release During a Simulated Severe Fuel Damage Accident: The HEVA Programme. Proc. of IAEA TC Meeting on Water Reactor Fuel Behaviour and Fission Products Release in Off-Normal and Accident Conditions, Vienna, Nov. 10 - 13, 1986, IAEA-TC-579.

[71] Peehs M., Kaspar G.: Experimental Investigation of the Caesium and Iodine Exhalation from Irradiated UO2. Proc. of IUPAC Conf. on the Chemistry of Materials at High Temperatures, Harwell, UK, 1981.

[72] APS Study Group: Report to the APS on Radionuclide Release from Severe Accidents in NPPs. Rev. Modern Phys., 57 (3), Part H, 1985.

[73] Gieseke J.A. i in.: Radionuclide Release under Specific LWR Accident Conditions. BMI-2104, 1985.

[74] Silberberg M. i in.: Reassessment of the Technical Bases for Estimating Source Terms.

NUREG-0956, 1986.

[75] Osetek D.J. i in.: Iodine and Cesium Behavior During the First PBF Severe Fuel Damage Test. Proc. of International Meeting on Light-Water Reactor Severe Accident Evaluation, Cambridge, Mass., Aug. 28 - Sep. 1, 1983.

[76] Groos E., Forthmann R.: Determination of Iodine-131 Release from Defected Irradiated Fuel Rods under Simulated LOCA Conditions. Proc. of 5th International Meeting on Thermal Nuclear Reactor Safety, KfK 3880, 1985.

[77]Hosemann P.: Remark on Methods of Evaluation of Aerosol Sources Related to PWR Core Meltdown Accidents. Proc. of the OECD/NEA/CSNI Specialists' Meeting on Nuclear Aerosols in Reactor Safety, KfK 3880, 1985.

[78] Albrecht H., Wild H.: Review of the Main Results of the SASCHA Program on Fission Product Release under Core Melting Conditions. Proc. of ANS Topical Meeting "Fission Product Behavior and Source Term Research", Snowbird, Utah, July 15, 1984.

[79] Olander D.R.: Fundamenal Aspects of Nuclear Reactor Fuel Elements: Solution to Problem. TID-26711, 1976.

[80] Baker L. i in.: Source Term Experiments Project (STEP): A Summary. Final Report.

EPRI-NP-5753M, 1988.

[81] Gasser R.D. i in.: Damaged Fuel Experiment DF-1. NUREG/CR-4668, SAND 86-1030, 1990.

[82] Killeen J.C., Haaland A.: Thermal Response to Inert Gas Mixing in the Fuel-Clad Gap on Operating Rods. Proc. of IAEA TC Meeting on Water Reactor Fuel Performance and Technology, IAEA-TC-659, 1989.

[83] Kinoshita M., Kitajima S.: Analysis of Axial Gas Flow and Mixing in Normal and Rifled

Cladding. Proc. of IAEA TC Meeting on Water Reactor Fuel Performance and

Technology, IAEA-TC-659, 1989.

[84]Hofmann P., Kerwin-Peck D.K.: UO2/Zircaloy-4 Chemical Interactions and Reaction Kinetics from 1000 to 1700°C under Isothermal Conditions. KfK 3552, 1983.

[85] Strupczewski A.: The Release of Fission Products from WWER-440 Reactors under DBA Conditions. Calculation Methods and Results for Żarnowiec NPP. Proc. of IAEA TC Meeting on Water Reactor Fuel Behaviour and Fission Products Release in Off-Normal and Accident Conditions, Vienna, Nov. 10 - 13, 1986, IAEA-TC-579/43.

[86] Kress T.S.: Review of the Status of Validation of the Computer Codes Used in the Severe Accident Source Term Reassessment Study. In: ORNL/TM-8842, 1985.

[87] Politis C: Untersuchungen im Dreistoffsystem Uran-Zirkon-Sauerstoff. KfK 2167, 1975.

[88] Skokan A. i in.: Ermittlung von Daten zur Beschreibung des Reaktions- und Freisetzungsverhaltens bei Temperaturerhóhung im RDB und beim Kernschmelzen, w: KfK 3350, 1982.

[89] Croff A.G.: A User's Manual for the ORIGEN-2 Computer Code. ORNL/TM-7175, 1980.

[90]OECD LOFT Project: Experiment Analysis Summary Report of OECD LOFT LP-FP-1. Fission Product Behavior. OECD-LOFT-T-3810, 1987.

[91] FaHrpćKHH 10.11. i in.: OCKOJIKH fSfiJiQuna *mep. M.: 3HeproaTOMH3flaT, 1986.

[92] FlaBJieHKO B.H., GiaBarHH II./L: PacneT coaepHcaHHH paflHoaKTKBHOCTH B pa3JiHHHbix TexHOjiorHHecKHx KOHTypax neTJiH PW-1 peaicropa MAPH.JŁ H A 3 HM. H.B.KypqaTOBa, 1980.

[93] Kalendarz Chemiczny 1954. Państwowe Wydawnictwa Techniczne, Warszawa 1953.

[94] Strupczewski A, Marks P.: Zachowanie się prętów paliwowych reaktorów chłodzonych wodą w stanie ustalonym i nieustalonym. IAE-25/A, 1997.