• Nie Znaleziono Wyników

Kierunki dalszych badań

W dokumencie Index of /rozprawy2/11259 (Stron 193-200)

6. Podsumowanie

6.3. Kierunki dalszych badań

W dalszych badaniach należy przeprowadzić analizę możliwości poprawy uwa-runkowania układów równań technikami regularyzacji. Od strony praktycznej kolej-nym krokiem badań powinna być weryfikacja metody identyfikacji stanu technicz-nego w warunkach eksploatacyjnych. Należy przeprowadzić jednoczesny pomiar we wszystkich mierzonych stopniach swobody (wraz z punktami referencyjnymi) oraz dokonać estymacji parametrów modalnych w oparciu o operacyjną analizę modalną. Ważna jest również analiza możliwości zastosowania metody w systemie monitoringu strukturalnego SHM.

Bibliografia

[1] Aktan A.E., Lee K.L., Chuntavan C., Aksel T., Modal testing for structural

identifi-cation and condition assessment of constructed facilities, in Proceedings, 12th

Inter-national Modal Analysis Conference, Honolulu, Hawaii, 1, pp 462-468, 1994.

[2] Allemang R.J., Brown D.L., A Correlation Coefficient for Modal Vector Analysis, Proceedings, International Modal Analysis Conference, pp.110-116, 1982.

[3] Allemang R.J., The Modal Assurance Criterion – Twenty Years of Use and Abuse, Sound and Vibration, August, pp.14-21, 2003.

[4] Alvandi A., Cremona C., Assessment of vibration-based damage identification

tech-niques, Journal of Sound and Vibration, 292, pp.179-202, 2006.

[5] Augarde C.E., Generation of shape functions for straight beam elements, Computers & Structures, 68, pp.555-560, 1998.

[6] Azam S.E., Mariani S., Investigation of computational and accuracy issues in

POD-based reduced order modeling of dynamic structural systems, Engineering

Struc-tures, 54, pp. 150-167, 2013.

[7] Baghiee N., Esfahani M.R., Moslem K., Studies on damage and FRP strengthening

of reinforced concrete beams by vibration monitoring, Engineering Structures Vol.31

(4), April, pp.875–893, 2009.

[8] Bhatti M.A., Fundamental Finite Element Analysis and Applications, John Wiley & Sons, 2005.

[9] Białas–Heltowski K., Wyznaczenie i ocena rozwiązań polioptymalnych na przykładzie

wybranego układu technicznego, Praca doktorska, Uniwersytet Zielonogórski, Wydział

Mechaniczny, 2006.

[10] Box G.E.P, Wilson K.B., On the experimental attainement of optimum conditions, Journal of the Royal Statistical Society, Series B, 1, 1951.

[11] Brechlin E., Bendel K., Keiper W., A New Scaled Modal Assurance Criterion for

Eigenmodes Containing Rotational Degrees of Freedom, Proceedings, International

Seminar on Modal Analysis, ISMA23, 7 pp., 1998.

[12] Caramia M., Dell’Olmo P., Multi-objective Management in Freight Logistics:

Incre-asing Capacity, Service Level and Safety with Optimization Algorithms, Springer,

[13] Cawley P., Adams R.D., The locations of defects in structures from measurements of

natural frequencies, Journal of Strain Analysis, 14 (2), pp.49–57, 1979.

[14] Chen H.-P., Application of regularization methods to damage detection in large scale

plane frame structures using incomplete noisy modal data, Engineering Structures,

20 (11), pp.3219–3227, 2008.

[15] Cheng F., Kim S-M., Reddy J.N., Abu Al-Rub R.K., Modeling of elastoplastic

be-havior of stainless-steel/bronze interpenetrating phase composites with damage evo-lution, International Journal of Plasticity, 61, pp. 91-111, 2014.

[16] Chesne S., Deraemaeker A., Damage localization using transmissibility functions: A

critical review, Mechanical Systems and Signal Processing, 38, pp. 569-584, 2013.

[17] Chudnovsky A., Slow crack growth, its modeling and crack-layer approach: A review, International Journal of Engineering Science, 83, pp. 6-41, 2014.

[18] Ciesielka W., Szopa K., Gołaś A., The analysis of load of overhead power line due

to weather condition and design of smart system of its recognition, Pol. J. Environ.

Stud., 25(5A), pp. 27-36, 2016.

[19] Cornwell P., Doebling S.W., Farrar C.R., Application of the strain energy damage

detection method to plate-like structures, Journal of Sound and Vibration, 224(2),

pp.359-374, 1999.

[20] Creed, S.G. Assessment of large engineering structures using data collected during

in-service loading, in Structural Assessment Butterworths, London, pp. 55-62.

[21] D’Ambrogio W., Fregolent A., The use of antiresonances for robust model updating, Journal of Sound and Vibration, 236(2), pp. 227-243, 2000.

[22] Dawson B., Vibration condition monitoring techniques for rotating machinery, The Shock and Vibration Digest, 8, pp. 3, 1976.

[23] Dąbrowski Z., O potrzebie identyfikacji modeli dynamicznych, Mechanik, 12, pp. 1932-1933, 2006.

[24] Dąbrowski Z., Dziurdź J., Simultaneous Analysis of Noise and Vibration of Machines

in Vibroacoustic Diagnostics, Archives of Acoustics, 41(4), pp. 783-789, 2016.

[25] Deraemaeker A., Preumont A., Vibration based damage detection using large

ar-ray sensors and spatial filters, Mechanical Systems and Signal Processing, 20, pp.

1615-1630, 2006.

[26] Devriendt C., Guillaume P., The use of transmissibility measurements in otput-only

modal analysis, Mechanical Systems and Signal Processing, 21, pp. 2689-2696, 2007.

[27] Devriendt C., Guillaume P., Identification of modal parameters from transmissibility

measurements, Journal of Sound and Vibration, 314, pp. 343-356, 2008.

[28] Doebling S.W., Hemez F.M.,Peterson L.D., Farhat C., Improved Damage Location

Accuracy Using Strain Energy-Based Mode Selection Criteria, AIAA J, vol. 35, 4,

[29] Dryja M., Jankowska J., Jankowski M., Przegląd metod i algorytmów numerycznych, wydanie drugie poprawione, WNT, Warszawa, 1988.

[30] Dworakowski Z., Zastosowanie metod sztucznej inteligencji w automatycznej

diagno-styce struktur płytowych, Praca doktorska, AGH, Kraków, 2015.

[31] Dymek D., Jastrzębska E., Kurbiel W., Awarie linii elektroenergetycznych

wy-wołane oblodzeniem, XXVI Konferencja Naukowo Techniczna Awarie Budowlane,

Szczecin-Międzyzdroje, pp. 477-484, 2013.

[32] Escobar J.A., Sosa J.J., Gomez R,m Structural damage detection using

transforma-tion matrix, Computer and Structures, 83, pp. 357-368, 2005.

[33] Ewins D.J., Modal Testing: Theory and Practice, Research Studies Press, Letchworth, 1984.

[34] Eykhoff P., Identyfikacja w układach dynamicznych, PWN, Warszawa, 1980.

[35] Farrar C.R., Baker W.E., Bell T.M., Cone K.M., Darling T.W., Duffey T.W., Eklund A., Migliori A., Dynamic Characterization and Damage Detection in the I-40 Bridge

over the Rio Grande, Los Alamos National Laboratory report LA-12767-MS, 1994.

[36] Farrar C.R., Doebling S.W., Cornwell P.J., Straser E.G., Variability of modal

pa-rameters measured on the Alamosa Canyon bridge, Proc. 15th International Modal

Analysis Conf., Orlando, FL, February, 1997.

[37] Farrar C.R., Doebling S.W., An Overview of modal-based damage identification

me-thods, Proceedeings of DAMAS Conference, Sheffield, UK, June, 1997.

[38] Filipek R., Zastosowanie MES do syntezy wibroakustycznych pól sprzężonych w

ukła-dach o wymuszeniu impulsowym, Praca doktorska, AGH, Kraków, 2012.

[39] Finney D.J., The fractional of factorial experiments, Annales of Engenics, 4, 1945. [40] Fisher R., The Design of Experiments, Oliver Boyd, London, 1935.

[41] Fladung W.A., Windows Used for Impact Testing, Proc. SPIE Vol. 3089, Proc. 15th International Modal Analysis Conf., pp. 1662-1666, 1997.

[42] Fladung W.A., Rost R.W., Cause and effect of applying the exponential window to

an impact force signal, Proc 14th International Modal Analysis Conf., pp. 1553-1559,

1996.

[43] Fox C.H.J., The location of defects in structures: a comparison of the use of

natu-ral frequency and mode shape data, In: Proceedings of the 10th international modal

analysis conference, pp.522–528, 1992.

[44] Fox R.L., Kapoor M.P., Rates of change of eigenvalue and eigenvectors, Journal AIAA, 6(12), pp. 2426–2429, 1968.

[45] Friswell M.I., Garvey S.D., Penny J.E.T., Model Reduction Using Dynamic And

Ite-rated IRS Techniques, Journal of Sound and Vibration, 186 (2), pp. 311-323, 1995.

[46] Friswell M.I., Inman D.J., Pilkey D.F., Direct Updating of Damping and Stifness

[47] Friswell M.I., Mottershead J.E., Finite Element Model Updating in Structural

Dyna-mics, Springer Science & Business Media, pp. 46, 1995.

[48] Friswell M.I., Penny J.E.T., Wilson D.A.L., Using vibration data and statistical

me-asures to locate damage in structures, Modal Analysis: The International Journal of

Analytical and Experimental Modal Analysis, 9(4), pp.239–254, 1994. [49] Gentle J.E., Matrix Algebra, Springer, pp. 173-200, 2007.

[50] Giergiel J., Uhl T., Identyfikacja układów mechanicznych, Państwowe Wydawnictwo Naukowe, Warszawa, 1990.

[51] Goliński J., Metody optymalizacyjne w projektowaniu technicznym, WNT, Warszawa, 1974.

[52] Golub G.G., Van Loan C.F., Matrix Computations, Third edition, The Johns Hopkins University Press, 1996.

[53] Gołaś A., Ciesielka W., Czajka I., Czechowski M., Filipek R., Suder-Dębska K., Szopa K., Śliwiński M., Wołoszyn J., Żywiec W., Mechanical engineering in Smart Grid

technology, Monografia, AGH, 2015

[54] Gołaś A., Filipek R., A method for the evaluation of coupling between lingitudinal

and transverse vibrations of a beam, Proceedings of the 17th International Congress

on Sound & Vibration, pp. 90, Cairo, 2010.

[55] Gołaś A., Iwaniec M., Szopa K., Hashed data transfer in SHM distributed systems

with the use of Power Line Communication technology, Key Engineering Materials,

518, pp. 154-159, 2012.

[56] Gopalakrishnan S., Ruzzene M., Hanagud S., Computational Techniques for

Struc-tural Health Monitoring, Springer, 2011.

[57] Gunakala S.R., Comissiong D.M.G., Jordan K., Sankar A., A Finite Element Journal

of Applied Sience and Technology, 2(8), pp.80-88, 2012.

[58] Guo H.Y., Structural damage detection using information fusion technique, Mecha-nical Systems and Signal Processing, 20, pp.1173–1188, 2006.

[59] Guo H.Y., Li Z.L., Two-Stage Multi-damage Detection Method Based on Energy

Ba-lance Equation, Journal of Nondestructive Evaluation, 30 (3), pp. 186-200, 2011.

[60] Guyan J.R.,Reduction of Stiffness and Mass Matrices, AIAA Journal, vol. 3 (2), pp. 380, 1965.

[61] Heylen W., Extensions of the Modal Assurance Criterion, Journal of Vibrations and Acoustics, Vol. 112, pp. 468-472, 1990.

[62] Heylen W., Lammens S., FRAC: A Consistent way of Comparing Frequency Response

Functions, Proceedings, International Conference on Identification in Engineering,

Swansea, pp. 48-57, 1996.

[63] Hsu T., Loh C., Damage Diagnosis of Frame Structures Using Modified Modal Strain

[64] Hunt D. L., Application of an Enhanced Coordinate Modal Assurance Criterion

(ECOMAC), Proceedings, International Modal Analysis Conference, pp. 66-71, 1992.

[65] Iwaniec J., Metody poprawiania jakości estymacji parametrów modeli modalnych, Wy-dawnictwo Instytutu Technologii Eksploatacji - PIB Radom, Kraków, 2005.

[66] Iwaniec J., Wybrane zagadnienia eksploatacyjnej identyfikacji układów nieliniowych, Rozprawy, Monografie, AGH, 2011.

[67] Iwaniec M., Szopa K., Ocena stanu technicznego belki na podstawie kryterium

MDLAC, Materiały XL Zimowej Szkoły Zwalczania Zagrożeń Wibroakustycznych,

pp. 93-100, Gliwice-Szczyrk, 2012.

[68] Jassim Z., Ali N., Mustapha F., Abdul Jalil N., A review on the vibration analysis

for a damage occurrence of a cantilever beam, Engineering Failure Analysis, 31, pp.

442-461, 2013.

[69] Jakubowicz A., Orłoś z., Wytrzymałość materiałów, WNT Warszawa, 1978.

[70] Jennings W.P., Olsen N.L., Walter M.J., Transient Excitation and Data Processing

Techniques Employing the Fast Fourier Transform for Aeroelastic Testing, NASA.

Langley Res. Center Flutter Testing Tech., pp. 77-114, 1976.

[71] Kammer DC., Sensor placement for on-orbit modal identification and correlation of

large space structures, J Guid Control Dyn, 14(2), pp. 251–9, 1991.

[72] Kąkol W., Łodygowski T.,Metoda elementów skończonych w wybranych

zagadnie-niach mechaniki konstrukcji inżynierskich, Wydaw. Politechniki Poznańskiej, 1991.

[73] Kess H.R., Adams D.E., Investigation of operational and environmental variability

ef-fects on damage detection algorithms in a woven composite plate, Mechanical Systems

and Signal Processing, 21, pp. 2394-2405, 2007.

[74] Kidder R.L., Reduction of Structural Frequency Equations, AIAA Journal, vol. 11 (6), pp.892, 1973.

[75] Kiełbasiński A, Schwetlick H., Numeryczna algebra liniowa, Wydanie drugie, WNT, Warszawa, 1992.

[76] Klinger C., Mehdianpour M., Klingbeil D., Bettge D., Hacker R., Baer W., Failure

analysis on collapsed towers of overhead electrical lines in the region Munsterland (Germany) 2005, Engineering Failure Analysis, 18, pp. 1873-1883, 2011.

[77] Koh B.H., Dyke S.J., Structural health monitoring for flexible bridge structures using

correlation and sensitivity of modal data, Computers & Structures, 85, p.117–130,

2007.

[78] Kratzig W.B., Petryna Y.S., Structural damage and life-time estimastes by nonlinear

FE simulation, Engineering Structures, 27(12), pp. 1726-1740, 2005.

[79] Kubrusly C.S., Malebranche H., Sensors and controllers location in distibuted systems

— a survey, Automatica, 21, pp. 117–128, 1985.

[81] Kurowski P., Mendrok K., Uhl T., An application of operational modal analysis in

modal filtering, Journal of Physics: Conference Series, 305, 2011.

[82] Lam H.-F., Yin T., Dynamic reduction-based structural damage detection of

transmis-sion towers: Practical issues and experimental verification, Engineering Structures,

33, pp. 1459-1478, 2011.

[83] Larson C.B., Zimmerman D.C., Marek E.L., A comparison of modal test planning

techniques: excitation and sensor placement using the NASA 8-bay truss, Department

of Mechanical Engineering, University of Houston, preprint, 1994.

[84] Lech Ł. Ocena stanu technicznego konstrukcji wsporczych linii elektroenergetycznych, Praca doktorska, AGH, Kraków, 2016.

[85] Lee U., Shin J., A frequency response function - based structural damage identification

method, Computers and Structures, 80, pp. 117-132, 2002.

[86] Levinzon F., Piezoelectric Accelerometers with Integral Electronics, Springer, 2014. [87] Li D.S., Li H.N., Fritzen C.P., A note on fast computation of effective

independen-ce through QR downdating for sensor plaindependen-cement, Mech Syst Signal Proindependen-cess, 23(4),

pp.1160–8, 2009.

[88] Li Y., An effective algorithm of computing symbolic determinants with multivariate

polynomial entries, Applied Mathematics and Computation, 192, pp. 382–388, 2007.

[89] Lieven N.A.J., Spatial Correlation of Mode Shapes, the Coordinate Modal

Assu-rance Criterion, Proceedings of the 6th International Modal Analysis Conference,

pp.690-695, 1988.

[90] Liu C., Jiang D., Crack modeling of rotating blades with cracked hexahedral finite

element method, Mechanical Systems and Signal Processing, 46(2), pp. 406-423, 2014.

[91] Liu F., Wang P., Wang W., Zhou L., Wang S., Model Updating and Damage Detection

Using Cross Model Cross Mode Method for 3D Frame Structures, Advanced Materials

Research, v. 243-249, pp. 5369-5373, 2011.

[92] MacAusland R., The Moore-Penrose Inverse and Laast Squares, MATH 420: Advan-ced Topics in Linear Algebra, University of Puget Sound, 2014.

[93] Macha E., Niezawodność maszyn, Politechnika Opolska, Opole, 2001.

[94] Machniewicz T., Yield Stress Modification in The Strip Yield Model, Mechanics and Control, v. 31 no. 4, 2012.

[95] Maia N.M.M., Almeida R.A.B., Urgueira A.P.V., Sampaio R.P.C., Damage detection

and quantification using transmissibility, Mechanical Systems and Signal Processing,

25, pp. 2475-2483, 2011.

[96] Majkut L., Wpływ lokalnej zmiany sztywności elementów konstrukcyjnych na

ampli-tudę drgań i widmo częstości, Praca doktorska, AGH, Kraków, 1999.

[97] Majkut L., Identyfikacja pęknięcia w belkach na podstawie pomiaru częstości drgań

[98] Majkut L., Identyfikacja pęknięcia belek na podstawie pomiarów amplitud drgań

wy-muszonych, Mechanics, 24(3), pp. 199-204, 2005.

[99] Majkut L., Diagnostyka wibroakustyczna uszkodzeń elementów konstrukcyjnych, Wy-dawnictwo Naukowe Instytutu Technologii Eksploatacji - PIB, Radom, 2010.

[100] Majumder L., Manohar C.S., Nonlinear reduced models for beam damage detection

using data on moving oscilator-beam interactions, Computers and Structures, 82, pp.

301-314, 2004.

[101] Manson G., Worden k., Allman D., Experimental Validation of a Structural Health

Monitoring Methodology. Part II. Novelty Detection on a Gnat Aircraft, Journal of

Sound and Vibration, 259(2), pp. 345-363, 2003.

[102] Manson G., Worden K., Allman D., Experimental Validation of a Structural Health

Monitoring Methodology: Part III. Damage Location on an Aircraft Wings, Journal

of Sound and Vibration, 259(2), pp. 365-385, 2003.

[103] Mańczak K., Technika planowania eksperymentu, WNT, Warszawa, 1976.

[104] Meirovitch L., Baruh H., On the problem of observation spillover in self-adjoint

distributed-parameter systems, Journal of Optimization Theory and Application,

39(2), pp. 269-291, 1983.

[105] Mendera Z., Szojda L., Wandzik G., Stalowe konstrukcje wsporcze napowietrznych

linii elektroenergetycznych wysokiego napięcia, Wydawnictwo Naukowe PWN SA,

Warszawa, 2012.

[106] Mendrok K., Porównanie Metod Wykrywania Uszkodzeń w Aspekcie Możliwości ich

Automatyzacji, Diagnostyka, 3(43), pp.83-92, 2007.

[107] Mendrok K., Lokalizacja Uszkodzenia z Zastosowaniem Filtracji Modalnej -

Weryfi-kacja Eksperymentalna, Diagnostyka, 1(45), pp. 85-90, 2008.

[108] Mendrok K., Damage Localization and Monitoring of Load Changes in Truss

Struc-tures, Mechanics and Control, 33(1), pp. 10-16, 2014.

[109] Mendrok K., Kurowski P., Operational modal filter and its applications, Arch Appl Mech, 83, pp.509-519, 2013.

[110] Mendrok K., Maj P., Application of the modal filtration to the damage detection

in truss structure, Diagnostyka - Applied Structural Health, Usage and Condition

Monitoring, 4(64), pp. 31-37, 2012.

[111] Mendrok K., Uhl T., Experimental verification of the damage localization procedure

based on modal filtering, Structural Health Monitoring, 10(2), pp. 157-171, 2010.

[112] Messina A., Jones I.A., Williams E.J., Damage detection and localisation using

na-tural frequency changes, Proceedings of Conference on Identifcation in Engineering

W dokumencie Index of /rozprawy2/11259 (Stron 193-200)