• Nie Znaleziono Wyników

On Testing Linearity of Trend Function

N/A
N/A
Protected

Academic year: 2021

Share "On Testing Linearity of Trend Function"

Copied!
7
0
0

Pełen tekst

(1)

A C T A U N I V E R S I T A T I S L O D Z I E N S I S

FO LIA O ECON OM ICA 225, 2009

Grzegorz Kończak*, Janusz Wywiał**

ON TESTING LINEARITY OF TREND FUNCTION

A bstract

Testing the goodness o f fit between a hypothetical trend function and its non-parametric variant will be considered. This problem was analysed e.g. by D o m a ń s k i (1979, 1990), W y w i a ł (1990, 1995). Our result can be treated as a modification of the test proposed by A z z a 1 i n i and B o w m a n (1993). The hypothetical trend function will be denoted by /( /, 0). It is estimated by an unbiased method. A trend function can be estimated by means o f an non-parametric method. Azzalini and Bowman suggested testing the hypothesis on the linearity o f the trend on the basis o f the ratio of two residual variances. One o f them is the residual variance o f the trend estimated by means o f the least square method and the other one by means o f a non-param etric method. The well known Pearson curves are used for an approximation o f the distribution function o f the ratio. We use a different method in order to approximate the distribution o f the test statistic. The table with quantilcs o f the test statistic are evaluated.

Key w ords: kernel estimator, trend, testing, approximation o f distribution

function.

1. Introduction

Let us rewrite the time series {ľ,,

t=

1, ...,

n}

by means o f the

Y T= [ľ |, Yi... Yn] vector o f independent and normally distributed random

variables. We assume that

Y ~ N (//,

L a 2 ) ,

where

I„

is a unit matrix o f n degree.

Let //=[jLi\ jiii ■■■ //«I, /ii~ f(0> where f(/) is the trend function. So, £(|i,)=f(0- Let

us assume that ľ,=f(0+Et, where eT=[e\ e2 ... £,,] and e~N(0, L o 2). Let c=[e\...en]

be the following well known residual vector o f estimator o f the linear trend,

obtained by means o f least square method:

(2)

where

X 7 =

p = i„ - x(xrx)"‘ xr ,

, N=[1 2 ... n], J = [l 1 ... 1].

(

2

)

The parameters o f the e vector are as follows:

4

= ц Р 7,

Eee= o W .

(3 )

Hence, e~iV(5e, Zec) and R(P) = n-2.

The well known (see e.g. H ä r d l e (1991)) non-parametric estimator o f the

trend function ДО is as follows:

Ä = Z ľA

j-1

(4 )

Where

0 m (5 )

the window parameter is denoted by h > 0 while g{.} is the density function of

standard normal distribution. Let

=

... //„] and A= [ö,;]. So:

/

j

= Y A

t

The residuals o f the non-parametric estimator o f the trend are defined by

с = Y - / /

or

e = Y B T

В = In

- A.

(

6

)

(7 )

(

8

)

(9 )

(3)

Moreover, ё ~N(A, Ee)> where:

А =

ЦВ7',

( 1 0 )

= с?ВВт,

(

1 1

)

R ( Z ) = R(В) = k < n. We assume that ц А 1 = ц, A = 0 and e ~N(O;

).

2. T ests o f trend linearity

W hen the postulated trend agrees with the true one, 5C= 0. Hence, our aim is

to test the hypothesis H0 : 5C = 0 against the alternative one H\ :

0.

A z z a l i n i and B o w m a n (1993) proposed the following test statistic:

eer - eB 7 B e r

r

= _ ___

П2)

K"

e B W

{ }

Sufficiently large value o f the Rn statistic leads to a rejection o f the hypothesis

tfo. The p-value o f the test can be evaluated on the basis of the following

expression:

p = P ( R n > r ) = P [ e ( l - (1 + r)B TB ) e T >

o)

(13)

The distribution function o f the quadratic form < ? (/-(l + r ) B l B')e

1

is

approximated by means o f Pearson curves.

Let us consider the following test statistic:

G =

(14)

"

е ,(ё )

where

е ( е ) = * р

0

W = - ^ f -

(15)

1] is the pseudo-inverse o f the E. matrix. The basic definitions and theorems

of mathematical statistics lead to the conclusion that ( n -

2

) Q { c ) and k Q s[c)

have chi-square distributions with (л-2) and к degrees o f freedoms, respectively.

Moreover,

(4)

Я ( е ( е ) | Я 0) = £ ( й ( ё ) | Я 0)

(16)

E ( Q { t ) \ H , ) > E ( Q x{ h ) \ H l )

(17)

Hence, significantly large value o f the G„ test statistic leads to the rejection of

the H0 hypothesis. The p-value o f the test can be evaluated on the basis o f the

following expressions:

p = P ( Gn > g \ H 0)

(18)

Р = Р ( е ( е ) - я 0 1( ё ) > 0 |Я 0)

(19)

p = P { U ( g ) > 0 \ H 0)

(20)

where

U( g) = \ M ( g ) \ T

(21)

M(g) = —— р--^вг(ввг)"'в

(

22

)

n

- 2

к

v

'

Similarly as it is in the case o f the Azzalini and Bowman’s test, the

distribution function o f the G„ statistic can be approximated by means o f the

Pearson curves. Below, we are going to consider one o f the other methods of

approximating a probability distribution function.

3. A p p roxim ation o f the distribu tion fu nction

On the basis o f the general method pointed out by P r o v o s t and R u d i u к

(1991), see M a t h a i , P r o v o s t (1992, pp. 152-153), too, we have the

following algorithm. Let L be such an orthogonal matrix that LL * =I„ and

Y=ZL

(23)

LTM (g)L=D(g)

(24)

where D(g) is the diagonal matrix of eigenvalues o f the M(g) matrix. Let D(g)

equal diag(c/|; ..., dg, d ^ , ..., - d ) where d > 0 for i = \ , . . . , r . Hence, the

expression (20) may be rewritten in the following way:

(5)

p= P{Z TD(g)Z<0}

(25)

where Z~JV(0,1 ).

The general results o f I m h o f (1961) lead to the following result (see

M a t h a i and P r o v o s t (1992, pp. 141, too):

p = P{Y 7M (g )Y <0} = P { Z TV ( g ) Z < 0 } = ~ ± Y n^

^

- d v

(26)

where:

£(v ) = - z Y ltg "'(div )

(27)

2

ix \

r M = Y l f i + * y

(28)

/=1

The value

x

is substituted for

со

in such a way that the following inequality

should be fulfilled ( s e e K o e r t s and A b r a h a m s , 1969):

n ' vy(v)

m / t \ w

J

2 1

Í J Í r r V J

-(29)

Next the — fs‘n^ — d v integral is evaluated approximately by means o f an

n о vy(v)

appriopriate numeric method.

4. A p p roxim ate evaluation o f qu antiles o f the test statistic

The approximate values o f the quantiles o f order 0.9, 0.95 and 0.99 were

evaluated on the basis o f the above method. The optimal value o f the window

parameter is fixed on the hg = ^ jy - level as it was suggested by G a j e k and

K a l u s z k a (2000). The well known method o f trapezium was used for an

approximation of the integral. The quantiles are presented in the Table 1. The

Table 1 shows the approximate dependence between the size o f the sample and

the values o f the quantiles.

(6)

T a b l e I Quantiles o f the G„ test statistic

N q u q u an tile n q a q u an tile 0.9 0.95 0.99 0.9 0.95 0.99 5 5.41 6.33 7.48 18 10.24 11.90 16.21 6 6.13 7.69 11.26 19 10.57 12.23 16.49 7 6.70 8.33 13.24 2 0 10.91 12.57 16.79 8 7.12 8.87 13.91 2 1 11.25 12.92 17.11 9 7.47 9.22 14.36 2 2 11.61 13.27 17.45 1 0 7.80 9.55 14.59 23 11.97 13.64 17.81 1 1 8 . 1 0 9.84 14.76 24 12.34 14.02 18.18 1 2 8.40 1 0 . 1 2 14.92 25 12.72 14.41 18.56 13 8.69 10.40 15.09 26 13.11 14.81 18.97 14 8.99 1 0 . 6 8 15.27 27 13.50 15.22 19.38 15 9.29 10.97 15.47 28 13.91 15.64 19.81 16 9.60 11.27 15.70 29 14.33 16.07 20.23 17 9.92 11.58 15.94 30 14.75 16.50 20.71

S o u r c e : authors’ own calculations.

n Fig. 1. Quantiles o f the test statistic

S o u r c e : own study.

R eference

A z z a l i n i A., B o w m a n A. (1993), On nonparam etric regression f o r checking linear relationships, “The Journal o f the Royal Statistical Society", B55(2), 549-557.

(7)

D o m a ń s k i Cz. (1990), Testy statystyczne, PWE, Warszawa.

G a j e k L., K a ł u s z k a M. (2000), Wnioskowanie statystyczne. M odele i metody, W ydaw nictwa Naukowo-Techniczne, Warszawa.

H ŕ i r d l e W. (1991), Sm oothing techniques (with implementation in S), Springer-Verlag, New York.

I m h o f J. P. (1961), Computing the distribution o f quadratic fo r m s in norm al variables, “ Biom ctrika”, 48, 419-426.

K o e r t s J., A b r a h a m s A. P. J. ( 1969), On the theory and application o f the general linear model, Rotterdam University Press.

M a t h a i A. M. , P r o v o s t S. B. (1992), Quadratic fo r m s in random variables (theory and applications), Marcel Dekkcr, Inc., New York

P r o v o s t S. B., R u d i u k E. M. (1991), Some distributional aspects o f ratios o f quadratic forms. Technical Report 91-01. Department o f Statistical and Actuarial Sciences, U.W.O., London, Canada.

W y w i a ł J. (1990), O badaniu istotności odchyleń od zera reszt modelu ekonometrycznego, „Zeszyty N aukow e Akademii Ekonomicznej w Katowicach”, 104/86, 175-187.

W y w i a ł J. (1995), Weryfikacja hipotez o błędach predykcji adaptacyjnej, Ossolineum, Wrocław.

Grzegorz Kończak, Janusz Wywiał

O testow an iu h ipotezy o lin iow ości trendu

W artykule rozważano pew ną modyfikację testu dla hipotezy głoszącej, że trend szeregu czasowego ma postać liniową, który zaproponowali A z z а I i n i i B o w m a n (1993). Staty-styka testowa je st ilorazem wariancji resztowej estymatora wartości funkcji liniowej trendu uzyskanej m etodą najm niejszych kwadratów i pewnej formy kwadratowej reszt oceny trendu otrzymanego m etodą estymacji jądrowej. W ysokie wartości tego ilorazu św iadczą przeciwko hipotezie o liniowości funkcji trendu. Ze względu na złożoną postać proponow anej statystyki Azzalini

i Bowman wykorzystali do aproksymacji jej rozkładu praw dopodobieństwa tzw. krzywe Pearsona. W niniejszym artykule stosuje się do przybliżenia rozkładu sprawdzianu testu inną metodę w ykorzystującą technikę całkowania numerycznego. Przy założeniu liniowej postaci funkcji trendu pozwoliło to w yznaczyć numerycznie kwantyle rzędu 0,9, 0,95 i 0,99 rozważanej statystyki testowej. Przedstaw ione wartości kwantyli m ogą stanowić podstawę do podjęcia decyzji o ewentualnym odrzuceniu hipotezy o postaci trendu liniowego.

Cytaty

Powiązane dokumenty

The analysis of the distribution of spectral coefficients allows us to determine various combinatorial properties of Boolean functions, such as redundancy, monotonicity,

kompanii; s∏u˝b´ rozpocz´∏a w konspiracji; zgin´∏a na Starym MieÊcie.. „Boƒcza” − Wiktor

strona 42 wyznaczenie dziedziny przy danym zbiorze wartości, tabela, wykres ćwiczenie. zadanie 12,

 obliczyć wartość argumentu dla danej wartości funkcji2.  wyznaczyć miejsce

koszt ukończenia, szacowane koszty do poniesienia, odchylenie kosztów ukończenia, wartość planowaną na tym etapie realizacji, wskaźnik

In the case of a small quantity of experimental data, assessment of the significance of the model and the parameters of the response surface function using parametric tests may

Aby sporz dzi wykres funkcji liniowej nale y wyznaczy dwa punkty, które nale do jej wykresu a nast pnie poprowadzi przez nie prost.. Tworzymy tabelk i w jej górnym

Żeby narysować wykres funkcji liniowej, musimy mieć dwa punkty, przez które ten wykres przejdzie.. Naszkicuj wykres