• Nie Znaleziono Wyników

№ (1) lim-if 0 lim-i- Г

N/A
N/A
Protected

Academic year: 2021

Share "№ (1) lim-if 0 lim-i- Г"

Copied!
14
0
0

Pełen tekst

(1)

ANNALES SOCIETATIS MATHEMATICAE POLONAE Series I: COMMENTATIONES MATHEMATICAE X V II (1974) ROCZNIKI POLSKIEGO TOWARZYSTWA MATEMATYCZNEGO

Séria I : PRACE MATEMATYCZNE X V II (1974)

E. T

a b e r s k i

(Poznan)

On general Diriclilet’s integrals

1 . I n t r o d u c t i o n . Let E be the class of all real functions f(t) Lebesgue- integrable over any finite interval, such that

T + c —T

(1) 2 lim-if ^oo 1 J \f(t)\dt = 0 = T-+co 1 _rf/_c lim-i- Г \f(t)\dt

for every fixed c > 0. E. g. the condition

<->•±00 lim

t = о implies ( 1 ), whenever these integrals exist.

Given a function f e E and a positive number l, we set

for X e ( — oo, oo), n = 0 , 1 , 2 , ...

Clearly, the last sums can be represented in the form

( 2 )

where

1

7 J f (u) Dln(u — x) d u , - i

k= 1

sin( 2 R -fl) izt 21

2 sin 711 21

In Section 4 we shall prove that, for some /’s of class E, the above general Hirichlet’s integrals ( 2 ) tend to f(x ) as l -> oo, n ->■ oo and Ijn -> 0 .

13 — Roczniki PTM — Prace M atem atyczne XVII.

(2)

500 E. T ab erski

Start with two obvious identities

l + x l —x

{ J f { x - t ) D ln(t)dt + J f{x + t)Dln{t)dtY

—l + x —l —x

l + x l —x

1 = iy { J DnW dt+ /

l + x —l —x

which yield

l —x

K (æ ;/ ) -/ ( « ) = y y f {f (x + t ) —2f(æ )+ f(x -t)} l> ln(t)dt+

—l + x

l + x —l + x

+ т у f ^ œ~ t^~^œ^ I)l^ dt + ^ ï / { / ( ж + * ) - / И } ^ ( * ) ^

l —x —l —x

= I lW + U lM + V '+ c c )

for же<0, V). Writing <px(t) = /(ж-И) — 2f (x )- sr f (x — t), we have

1

l ~ x

l lni®) = y j <Px{t)&n(t)M

0

l l

= y f ^W-DnW^-y =^(®)+^И-

0 Z— x

Therefore

«!,(*; / )-/ (* ) = J 'n W + v 'M + v ’M + w ü x ) .

If 0 and \f(x)\^.K (а ,Ъ ,К mean constants), then

\Uln(®)\

2 x —l

---1--- {J \т\т+2ыЛ.

4Zsin— (l — b) ~l By ( 1 ),

2

X — l

limy f \f(t)\dt= 0

Z->oo v J

uniformly in же <a, b). Consequently,

lim Uln(x) = 0

Z—>co

lim У^(ж) = 0 = lim Wln{x).

Z—>■ oo Z—xx>

and, analogously,

(3)

Thus (3)

General DirichleVs integrals 501

S ln{ o r,f)-f(x ) = J ln{x) + o{ 1) as Z-> oo,

uniformly in xe (a , b ) (0 < a < b < oo), n = 0 , 1 , 2 , , whenever /e ÆJ remains bounded in <a, fe>.

It is easy to see that, in the last assertion, the assumption 0 < a < b

< oo can be replaced by — oo < a < b < oo.

In the sequel, we shall denote by M (u), N (u) [resp. M (u ),N (tt)]

and M k(u), Nk(u) [M k(u ), 1Ул(г«)] (к = 0, 1, 2) the suitable pairs of non­

negative convex functions complementary in the sense of Young ([ 2 ], p. 16-20). For the inverse functions the symbols M~l (v), N~x(v) etc.

will be used.

2 . A u x i l i a r y r e s u l t s c o n n e c t e d w i t h g e n e r a l i z e d v a r i a t i o n s . As in [4], Section 1 , let FM(/; a, b) and V*M(f, a, b) be the first and the second M -variation of the real function f in a finite interval (a , 6 ). Write

a, °°) - lim V m (/; b), У*м(Л - oo,b) = lim V*M{f] a, b).

b -* oo a —>—oo

Eetain the definition of the strong majorant, given in [4], Section 3.

By an argument similar to that of [4], Theorem 3.1, we obtain L emma 1 . Suppose that V*M{f\H, oo) < oo — oo, H) < oo]

for some fixed H, and that N (u) has the strong majorant N (и) in an interval

<0, rf). Then

lim F^(/; h, оо) = 0 [ lim F^(/ï - h) = 0 ].

h —>oo Л -> ~ oo

Consider now the functions

Z Z

Ф'п(г) = j f D l„(t)dt, Wln( z ) = j f t & M d t (*> 0).

0 0

L emma 2. Let

(i) M 0(u) = uq (q > 1 ), or

(ii) M 0(u) = и (log(2/^))_y (y > 1 )

for ue ( 0 , |>. Then, under the restriction l > 0 and n — 0 , 1 , 2 , ..., Ум0(Ф1п> ^

where A is a constant depending resp. on g and y, only.

P ro o f in case (ii). Write

(4)

502 R. T ab er ski

If <a, £> c <0, cq>,

(S fS ax

( 4 ) j y f Dln{t)dt = y j \FlJt)\dt J dt < 1 .

.( 6 )

In case <ct, / 8 > c <am, an+1> (w = 1, 2, n),

1 2

J Dln{t)dt na n <■ miz

2 1 и'п-Я (2“ + 1 ) ^ Clearly, (4) and (5) imply

a/c+l

(6) J J \D‘M \ à t<

ft + 1 for A; = 0 , 1 , 2 , ..., n.

Take an arbitrary partition

( i ) 0 = < c tx <c t2 tr <C i = 1 j and pnt AF{%) = F (tp+1) — F(t„).

1° If ak < ti+ l< . .. < tj < а л+1 (0 < 7v < n, j > i + 1), then, by ( 6 ),

i- 1 j - 1

у ж 0 (иФ^а>]) = у to i jiog 2 { - у

и < о ) Г ) . 3 - 1

{log 2 (& + l)}} i V лф \ (fc + l){log2(fc-f-l)}>

2 ° In case а* < % < а й+1 < а л+2 < ... < ат 4+i (1 < A' < — 1,

1 < r < r), inequality (5) leads to

{ l o g Z k n y ^

(& + l){log2(fc + l)}>’

3° Finally, if a 0 < tv < ax < a 2 < ... < am < /„+1 (0 < r < r, 1 < m <

< n + l), estimates (4), (5) give

Ж (\АФ1 (t )|) < i < ___é___

°d « (,)!)< {iog|}y ^ 3 (log|У Hence

У ЛГ„(ИФ(,(*,) 1 ) < 2 у

v -=0 =0 (* + 1) {log2 (* + 1)>” 3{log(f)} 3\■> у >

(5)

General Diriclilet's integrals 503

i. e. (see [4], Section 1) V *

3 I

q

« i 0 , l) < 1 +

rn=l

2 m (log2m)y

4 3{iog(|)F’

and the desired result follows (cf. [ 6 ], Section 7).

Since

uq < Lu for и e ( 0 ,f>,

with a certain constant L (depending only on q and y), the thesis in case (i) is an immediate consequence of the preceding assertion.

L emma 3. Given any q > 1, let M 0(u) = uq for и > 0. Suppose that 0 < l < C(n + l ) 1-1/® (n = 0 ,1 , 2, ...), with a certain constant C. Then

0, I K l + 2!+ 1 P .

P roo f. Let am (m = 0 , 1 , ..., n + 1) be as before, and let

( 8 )

А(ж) = ж/sin ж ( 0 < ж < 7 г / 2 ).

In case <(a, /?> <= < 0 , ax>, we have

2n-\-4 r ai l 1

IT / w ' ^ dt / tdt

21 о J 2?г + 1

If (a , /?> cz ( a m, an+1} (m = 1 , 2, ..., n), the mean-value theorem yields

P

(9) l tDln(t)dt 1 / 71 ft \ f . 2 Z

< — Я —- sin( 2 w + l) —- dt < ---

\ 2 1 / J v ' 2Z (2 W + 1)тс

Prom ( 8 ) and (9) follows that

"A; 4-1

( 10 ) f 7 Z

j t\Dln( t ) ld t ^ —- - - - for Jc = 0 , 1 , 2 , n . ak

Choose partition (7), retain the symbol ЛF (tv). By (8)-(10), in cases 1°— 3° considered in the last proof, we get successively

V jr,(i jy i< o i) < j J / w ln(K)\< ( T n F ’

v=i v=$i ' '

( * 21

2 w + l ( 2 п + 1 )тт) H \ 2 ю + 21 1 \ q

(6)

504 R. T a b ersk i

Consequently,

(n + l f - 1 ’ 2q+lF

and the thesis is now evident.

Similarly, the following result can easily be obtained.

L em m a 4. Let с, y be two positive constants, y > 1, and let

0 < Z < cmin{[log(% + 3)]y, {2n + l)} (n = 0 ,1 , 2 , ...).

Then, taking

we have

^ 0 ( П ; 0 , ! ) < l + {2 + (log 2 r ’’}c.

For the sake of completeness, we shall yet give an important estimate proved in [3], Theorem 2.3 (cf. [5], (10.9)).

L em m a 5. I f F^f l ( F ; a, b) < oo, V*M2{0; a, b) < oo and

3 . A n a l o g u e s o f t h e R i e m a n n - L e b e s g u e t h e o r e m . Throughout this section the real-valued functions f(t) are Lebesgue-integrable over all finite intervals and subject to further restrictions specified in particular statements.

T heorem 1 . Suppose that

OO

then

ь

J { F (t)-F (a )} d G (t)j< oVMl(F-, a, b)V*„2(G-, a, b).

a

Then, for each real a, b (a < b) and ô > 0,

■uniformly in xe <a , by, provided Z-> oo ,n -> oo.

(7)

General Dirichlefs integrals 505 P ro o f. By the assumption, for any positive s there is a A > b such that

/ J f i î M i * <

uniformly in же (a , b>. Hence

1

T

г

j f ( x ± t ) B ln(t)dt

A

< 2 when же <a, ft) and Z > А (n = 0 ,1 , 2 , ...).

Now, it is enough to prove that the functions

A

Qt,nix ) = j j f ( x ± t ) B ln(t)dt d

are numerically less than e/ 2 , uniformly in же 6 ), if Ijn are sufficiently small.

1 ° Suppose first that f(t) is continuous in the interval <a — <5, b + A}.

Write [i = max|/(Z)| in <5, &-f zl>. Choose the partition ô = t0 < tx < t2 < ... < ts = A

for which

Osc f{ x ± t)<

Т а (h = 0 , 1 , 2 , . . . , s - 1 ).

By the mean-value theorem,

Qt,nix) = ---- j f { x ± t ) s m ( 2n + l ) ^j- dt (l > ô, ô < £ < A).

2 Z sin^— 6 21 Consequently,

j f (x ± t) sin (2 n - f 1 ) 7U t dt

Without loss of generality, let us consider the integral

£ TCt

#«(*) = J /(a? + Z)sin( 2 u + l)-^-<ZZ,

(8)

506 R. T ab ersk i

only. If tr < £ < tr+1 (0 < Г < S — 1),

r — î +1 ç

Ц п(я) = У A-=° i k Z. j sin[2n + 1 ) ~ dt + J/(a>-H)sin( 2 w + l ) - ^

T — l O f c + l

dt

k = о t

f {f(x + t ) - f ( x + tk)}sin(2n + l ) ~ d t + s

+ J {f(oc + t ) - f ( t r)}sin(2n + l ) — dt +

tr

y ^ f ( x + tk) J sin( 2 u + l ) ~ d t + f { t r) J mn{2n + l ) ~ d t .

*k + 1

Hence ti­

ed 4:1

î. e.

j.v

\Itn(x )\ ^ ~7~7 ~ à) [л{г. + 1 ) — < — ?

4zl ( 2 w + 1 ) tc 2

1 Фмг ,(ж)1 < eM as Ijn are small enough.

2 ° In general case when f(t) is Lehesgue-integrable in (a — ô, Ъ + A ), лее can find a function g{t) continuous in this interval snch that

b + A

f \f(t)-g{t)\dt <

Erddently, a — ô

~2

Qt,n(x) = ~ j { f{ x ± t)-g (x ± t)} D ln{t)dt + j j g ( x ± t ) D ln(t)dt

Ô Ô

and, by the mean-value theorem, the first term does not exceed in absolute

value л

--- f l/(#±*)-0O»±*)|d< < j ,

2 Zsin—- s

21 ^

uniformly in xe {a , by, whenever l ^ Ô (n = 0 , 1, 2, ...). By lo,

A

J f g (x ± t)D ln(t)dt < — (a < x < b) 4:

if l Jn is small; whence

( 1 1 ) I Q f » ( * ) l < e / 2

for these l, n, x, and the desired result follows.

Bern ark. Since

i

lim — f Dln(t)dt = 0 (ô > 0 ),

(j/nb 0 l j

(9)

General DiricMeVs integrals 507 the hypothesis of Theorem 1 can be replaced by

— I

/

f ( t ) - c 1 00

dt-\- [ f(t) <?2

t J l t dt < oo,

where c1} c2 signify two real constants.

T heorem 2. Let f(t)/t be of bounded variation over the intervals ( — oo ,

— H ), (II, o o), with a certain positive И. Then the thesis of Theorem 1 remains valid.

P ro o f. In view of the well-known Jordan theorem m

t = /i (*)-/*(<),

where f k(t) (h = 1 , 2 ) are non-negative and non-increasing [non-decreasing]

in (Л , oo) [ ( - oo, — Я>].

Taking a A ^ max(H — a, H + b, 1) and putting i

Щ п(я) = j § f{x± t)B n{t)dt, л i

j (x ± t)fk(x ± t)D ln(t)dt

A

{a < x ^ b , l > A, h = 1 , 2), we have

4n(3>) = I t ~ I i- By the mean-value theorem

( t O C J — —sm ^ + i)— tk f * 1 Tit A 2 sin-^-

21 i k •— 7it

1 r 21 . 4 7rf ,

± - J --- ~ s m ( 2n + l ) - m J sin —

21

{ X r . -Kt

= f k{ x ± A )l---— j sm( 2 n + l) — d t±

} tc ZI

2 bsin---- J 21 _I . sk

1 21 r . ut )

± ---— sin (2w + 1 ) Vf dtf

77 . 7X§k J, 21 \

Sin --- —

£

. 21

(Л < I, < l, A < Й < A < £ < £k, J c = l , 2),

(10)

508 R. T aberski Therefore

^ ±A)- ( 2 ^ V T +1}

< - ^ ^ у ^ т ах{Л(Я ),/л(-Я)}{1пах(|а|, |ô|) + l} . Consequently, for any given s > 0,

\Bfn{x)\ < «/2 (&<#<&), whenever Ijn is small enough.

Clearly, the estimate (11) also holds. Thus, the proof is completed.

T heorem 3. Suppose that f(t) is of bounded the second Ж-variation over the intervals ( — сю, —H}, (Н , сю) (H > 0 ), where

(i) M (u) = u p( p > 1 ), or

(ii) M (u) = exp( — l/ u a) (0 < a < |)

for sufficiently small и > 0 . Then the assertion of Theorem 1 is also true.

P ro o f in case (ii). Retain the symbols Ф1 п{%), Qt,n(x ) and Щ Л Х) used above, with l > A > тах(£Г — a, H -f 6 ).

Consider M 0(u) as in Lemma 2 (ii), and put

M (u) = exp( — 1 / m «) (0 < a < a < \) for small и > 0. Then

, 2 \7 / 1 \—x/«

M 01{v)^i v\log—\ , M 1{ v ) = n og—I , , i \ - i/a _ / i \—i/â N (и) < и [log — I , N (и) ^ \u I log

'W/ \ 'll i

for positive u, v small enough (see [ 2 ], p. 25). Therefore, N (u) is the strong majorant of N (u) and

oo

N î ' ( l ) N - ' { l ) + È M o l { l ) S ‘ ( l )

Clearly,

<y < oo if 1 + y < 1 1 a .

i

Rtn(®) = J {f{æ± z)-f{x± A )}d< Pln{z) +

A

l

+ / ( ж ± Л ) - у f l ) U t ) d t = J f + J f .

A

(11)

General Dirichlet’s integrals 509 In view of Lemmas 6 and 2,

|J±| < oAV^(F±-, A, l ) (I > A, n = 0 ,1 , 2, ...), where

F±{z) = f (x ± z ) ( a ^ x ^ b ) . Let e be a positive number. Then, by Lemma 1,

r v ( F i ; A , l ) K r ^ ( f ; a + A, со) <

and

A ^ X V ^ i f ; - o o ^ - A X ^ L - ,

provided A is large. Consequently, u f i <

8

4 for x e (a , by, l > A, n — 0, 1, 2 , ...

Since х-\-А е(Д , oo), x — Ae{ — oo there is a constant K{A) such that \f(x±A)\ < K (A ) when же<«, ft). Applying the mean-value theorem, we obtain

2 1

(2^ + 1 )^ ^ < 4 ’

uniformly in xe <a , &), if l/n is small enough.

Finally, inequality (11) remains valid. Hence the theorem.

In case (i) we argue analogously.

T heorem 4. Let f(t)jt be of bounded the second M -variation over the intervals ( — oo, —Н у ,(Н , oo) ( H > 0 ), with M (u) considered above.

Then, in case (i) [(ii)] of Theorem 3, the thesis of Theorem 1 holds under the conditions of Lemma 3 [Lemma 4] concerning l, n, whenever 1/p + l I g

> l [ y < (1 a ) / а ].

The proof is similar to that of Theorems 2, 3.

4 . C r i t e r i a o f t h e D i n i a n d Y o u n g t y p e . Eetaining the previous notation, we restrict now to functions fe E satisfying the conditions given in any one of Theorems 1-3. The symbol f { x ± 0) will means limf{x-±t) as t - * 0 +.

T heorem 5. Suppose that, for any xe {a, by (a < b),

f

\<Рх(1)\ dt < oo,

t

(12)

510 E, T ab ersk i

with some r — r(x) > 0. Then

(1 2 ) lim S ln(x-,f) = f(æ ),

(Z/n )-*0

provided l -> oo,n-> oo and a < x < 6 . 7// is continuous at every xe {a, 6 ) and if

r— lim M ) +

T

/ dt = 0

uniformly in xe (a ,b } , the convergence ( 1 2 ) is uniform in this interval.

P roo f. In view of (3), it is enough to show that i

Jli(v ) = y J VxW&niftàt ( a ^ x ^ b )

tends to zero [event, uniformly] as ljn-> 0 .

Taking an arbitrary e > 0 and any xe <a , b), we can find a positive ô < l such that

и

f

\<Px(t)\ dt < e.

By the mean-vaine theorem,

a a Tit

y ( cpx(t)Dln(t)dt = J ояЛС 2 Z nt ---sin( 2 a -f 1 ) —- dt

7 it nt 21

0 sin—

21 7T<5

~2d v

f

q)~(t) nt

& . ~ ^ s m ( 2n + l) ~ - d t (0 < £ < 0).

no J t 21

sin—— f 21 Consequently,

a

y f <PxW)&n(t)üt Writing

1 1 n e

< --- - e — — (Z > Ô, n ^ 0).

n 2 2

a i

J ln ( x ) = y ( / + f f ^ x W ^ n W ^

о a

and applying one of Theorems 1-3 , we get the desired assertion.

(13)

General DirichleVs integrals 5 1 1

T heorem 6 . Let f be of bounded the second M ^variation over an interval {A, B}, where

(i) M x(u) = u^1 (px > 1), or

(ii) M x(u) = exp( — l/u*1) (0 < a x < |)

for sufficiently small и > 0. Then if (a , b) cz (A, B) and

f ( æ) = + f or Xe <>, &>>

the thesis of the first part of Theorem 5 holds.

In the ease when f is continuous at every xe <(a , by, the conclusion is as in the second part of Theorem 5.

P ro o f. In case (i) the proof runs as in [5], Section 1 2 . If M x(u) is defined by (ii), we choose the function

M x(u) — exp( — l j u 4 ) (0 < a x < a x < |) for small и > 0. Considering M 0(u) as in Lemma 2 (ii), we have

k= 1

(JX < OO;

whenever 1 + y < l/ ax (see Section 3).

Let

F x {t) = {f(x + t ) + f ( x - t )}/2 for te (O jl), JFx(O) = {/(ж + b) A f(x —• 0 )}/2 = f(x ).

Evidently, for each e > 0 and xe (a , by, there is a positive <5 such that

0 , ô) < e.' Further,

ô i

Jln(x)= 2 J {Fx{ z ) - F x{Q)}d<Pln{z) + j j {Fx{ t ) - F x{0)}Dln(t)dt.

0 < 5

In view of Lemmas 5 and 2, the first term does not exceed 2 oxAe. By Theorems 1-3, the second term approaches zero as l -> oo, n -> oo and I In 0 . Thus, the proof is completed.

We still note that, for /e JE, Theorem 4 leads Theorems 5, 6 in which the assumptions of Lemmas 3, 4 are added, respectively.

A suitable analogue of the de la Vallée-Poussin test ([ 1 ], p. 247)

■^an easily be obtained, too.

(14)

512 R. T ab ersk i

References

[ 1 ] H. К. Бари, Тригонометрические р яды , Москва 1961.

[2] М. А. К р а с н о с е л ь с к и й и Я. Б. Рутиц кий, В ы пуклы е функции и про­

с т р а н с т в а Орлича, Москва 1958.

[3] М. Maj ewska, О zbieznoéci szeregow trygonom etrycznych, Ease. Math. 5 (1970), p. 55-61.

[4] R. Taberski, Som e pro p erties o f M -v a ria tio n s, Prace Mat. 15 (1971), p. 141- 146.

[5] L. C. Young, A n in e q u a lity of the H older type connected w ith S tieltjes in tegratio n , Acta Math. (Uppsala) 67 (1936), p. 251-282.

[ 6 ] On the convergence o f F o u rie r-B e sse l series, Proc. London Math. Soc. (2), 47 (1942), p. 290-307.

INSTITUTE OF MATHEMATICS, A. MICKIEWICZ UNIVERSITY, POZNAN

Cytaty