• Nie Znaleziono Wyników

IV 2.3.3 Badanie kinetyki propagacji ładunku kompozytów polimer

V. Wnioski

Materiał doświadczalny zebrany w trakcie realizacji niniejszej pracy pozwala na sformułowanie następujących wniosków o charakterze ogólnym:

1. Elektrochemiczna polimeryzacja wybranych monomerów (pirol, anilina, 3,4-etylenodioksytiofen) w obecności lignosulfonianów różniących się składem elementarnym oraz pochodzeniem (drzewo liściaste lub iglaste), umożliwia wytworzenie cienkich filmów przewodzących, wykazujących dodatkową elektroaktywność faradajowską spowodowaną przebiegiem odwracalnych reakcji grup chinonowych pochodzących od lignosulfonianu. Makrocząsteczki lignosulfonianu pełnią w trakcie elektropolimeryzacji rolę anionowego czynnika domieszkującego, kompensującego dodatnio naładowany łańcuch polimerowy. Powstałe kompozyty zachowują elektroaktywność w szerokim zakresie pH.

2. Podczas elektropolimeryzacji aniliny i 3,4-etylenodioksytiofenu dochodzi do jednoczesnego utleniania grup metoksyfenolowych lignosulfonianów. Prowadzi to do powstania kompozytów, które w elektrolicie podstawowym wykazują dobrze zdefiniowane sygnały redoks pochodzące od grup chinonowych. Badania potencjodynamiczne wskazują również na możliwość katalizowania utleniania grup metoksyfenolowych przebiegającej na powstających filmach polimerowych (proces autokatalityczny). W przypadku elektropolimeryzacji pirolu nie obserwuje się jednoczesnego utlenienia lignosulfonianów ze względu na niski potencjał utlenienia tego monomeru. Wytworzenie grup chinonowych następuje później w elektrolicie podstawowym po przyłożeniu potencjału przekraczającego potencjał formalny utleniania grup metoksyfenolowych, zgodnie z mechanizmem EC.

3. Zaobserwowano istotny wpływ warunków syntezy (gęstość prądu, stężenie lignosulfonianu, ładunek użyty w procesie elektropolimeryzacji) na elektrochemiczne właściwości wytworzonych materiałów. Dla każdego typu kompozytów możliwe jest wyznaczenie optymalnych warunków syntezy, skutkujące otrzymaniem filmów wykazujących jak najlepszy stosunek ładunku pochodzącego od procesów redoks do całkowitego ładunku kompozytu. Wraz ze wzrostem grubości filmów obserwuje się wzrost ograniczeń dyfuzyjnych pojawiających się wewnątrz filmów, co szczególnie manifestowane jest w środowisku o pH bliskim obojętnego. W elektrolitach o wyższym pH obserwuje się również pogorszenie odwracalności procesów redoks.

4. Wyniki potwierdzają duży wpływ struktury lignosulfonianów wynikającej z jego pochodzenia na ich właściwości elektrochemiczne. Lignosulfonian pochodzący z drzew liściastych (DP 845) wykazywał procesy redoks usytuowane przy niższych potencjałach niż lignosulfonian z drzew iglastych (DP 841). Przyczyną tego zjawiska było występowanie w strukturze DP 845 większej ilości grup syryngowych (podstawionych dodatkową, elektrodonorową grupą metoksylową).

5. Domieszkowanie polianiliny lignosulfonianami pozwoliło uzyskać efekt polimeru samodomieszkowanego, przez co obserwowano zdecydowane rozszerzenie elektroaktywności tego polimeru w kierunku wysokich wartości pH. Lignosulfonian trwale związany w strukturze polimeru umożliwiał jego domieszkowanie nawet w pH o wartości 13. Proces ten pozwolił na zwiększenie możliwości aplikacyjnych polianiliny, przed wszystkim w sensorach amperometrycznych.

6. Wprowadzenie lignosulfonianów w strukturę polimerów przewodzących pozwoliło na zdecydowane zwiększenie pokrycia powierzchni elektrody aktywnymi grupami chinonowymi. Spowodowało to wytworzenie efektywnego katalizatora przeniesienia ładunku dla procesów elektroutleniania takich związków jak: hydrazyna, NADH czy kwas askorbinowy. We wszystkich przypadkach obserwowano wzrost rejestrowanego sygnału prądowego przy potencjałach zbliżonych do potencjału formalnego grup chinonowych zawartych w kompozytach. Uzasadnia to prowadzenie dalszych badań nad wykorzystaniem kompozytów z udziałem lignosulfonianów w sensoryce elektrochemicznej i elektroanalizie.

7. Filmy kompozytowe typu polimer przewodzący/lignosulfonian mogą zostać wykorzystane jako cienkowastwowe katody w urządzeniach magazynujących energię.

Uzyskane wyniki świadczą, że większość zmagazynowanego ładunku w przeliczeniu na powierzchnię elektrody pochodzi z procesów faradajowskich związanych z lignosulfonianem. Zaproponowane kompozyty są materiałami tanimi, co zwiększa ich atrakcyjność w kontekście ewentualnych aplikacji jako elektrody do magazynowania energii.

Literatura

[1] T.J. Meyer, M.H.V. Huynh, H.H. Thorp, The possible role of proton-coupled electron transfer (PCET) in water oxidation by photosystem II, Angewandte Chemie International Edition Engl. 46 (2007) 5284–5304.

[2] F. Pariente, E. Lorenzo, H.D. Abruna, Electrocatalysis of NADH oxidation with electropolymerized films of 3, 4-Dihydroxybenzaldehyde, Analytical Chemistry 66 (1994) 4337–4344.

[3] B. Huskinson, M.P. Marshak, C. Suh, S. Er, M.R. Gerhardt, C.J. Galvin, et al., A metal-free organic-inorganic aqueous flow battery, Nature 505 (2014) 195–198.

[4] G. Milczarek, O. Inganäs, Renewable cathode materials from

biopolymer/conjugated polymer interpenetrating networks, Science 335 (2012) 1468–1471.

[5] E. Adler, Lignin chemistry - past, present and future, Wood Science and Technology 8 (1977) 169–218.

[6] J. Ralph, K. Lundquist, G. Brunow, F. Lu, H. Kim, P.F. Schatz, J. M. Marita, R.

D. Hatfield, S.A. Ralph, J.H. Christensen, W. Boerjan, Lignins: Natural polymers from oxidative coupling of 4-hydroxyphenyl-propanoids, Phytochemistry

Reviews 3 (2004) 29–60.

[7] C. Heitner, D.R. Dimmel, J.A. Schmidt (red.), Lignins and lignans advances in chemistry, CRC Press, Taylor and Francis Group (2010).

[8] S.H. Ghaffar, M. Fan, Lignin in straw and its applications as an adhesive, International Journal of Adhesion and Adhesievs, 48 (2014) 92–101.

[9] S. Prosiński, Chemia drewna, Wydanie 2, Państwowe Wydawnictwo Rolnicze i Leśne (1984).

[10] A. Gandini, Polymers from renewable resources: a challenge for the future of macromolecular materials, Macromolecules 41 (2008) 9491–9504.

[11] H. Hatakeyama, T. Hatakeyama, Lignin structure, properties, and applications, Advanced Polymymer Science 232 (2009) 3–6.

[12] S. Laurichesse, L. Avérous, Chemical modification of lignins: Towards biobased polymers, Progress in Polymymer Science 39 (2013) 1266–1290.

[13] J.J. Meister, Modification of lignin, Journal of Macromolecular Science, Part C – Polymer Reviews 42 (2002) 235–289.

[14] J.H. Lora, W.G. Glasser, Recent industrial applications of lignin: a sustainable alternative to nonrenewable materials, Journal of Polymers and Environment 10

[15] N.-E. El Mansouri, J. Salvadó, Structural characterization of technical lignins for the production of adhesives: application to lignosulfonate, kraft,

soda-anthraquinone, organosolv and ethanol process lignins, Industrial Crops and Products 24 (2006) 8–16.

[16] N.-E. El Mansouri, J. Salvadó, Analytical methods for determining functional groups in various technical lignins, Industrial Crops and Products 26 (2007) 116–

124.

[17] V.K. Thakur, M.K. Thakur, P. Raghavan, M.R. Kessler, Progress in green polymer composites from lignin for multifunctional applications: a review, ACS Sustainable Chemistry and Engineering 2 (2014) 1072–1092.

[18] M. Ek, G. Henriksson, G. Gellerstedt (red.), Pulp and paper chemistry and technology, Rodział 2 Pulping chemistry and technology (2009).

[19] S.M.K. Abd-Alla, M. A. Nada, M. El-Sakhawy, Infra red spectroscopic study of lignins, Polymer Degradation and Stability 60 (1998) 247–251.

[20] F.S. Chakar, A.J. Ragauskas, Review of current and future softwood kraft lignin process chemistry, Industrial Crops Products 20 (2004) 131–141.

[21] J. Gierer, Chemical aspects of kraft pulping, Wood Science and Technology 14 (1980) 241–266.

[22] A. Vishtal, A. Kraslawski, Challenges in industrial applications of technical lignins, Bio Resources 6 (2011) 3547–3568.

[23] J. Biermann (red.), Handbook of pulping and papermaking, Wydanie 2, Elsevier (1996).

[24] B. Xiao, X. Sun, R. Sun, Chemical, structural, and thermal characterizations of alkali-soluble lignins and hemicelluloses, and cellulose from maize stems, rye straw, and rice straw, Polymer Degradation and Stability 74 (2001) 307–319.

[25] M.N. Belgacem, A. Gandini (red.), Monomers, polymers and composites from renewable resources, Wydanie 1, Elsevier (2008).

[26] C. Kenaf, F.O.R. Linerboard, Soda-anthraquinone pulp from malaysian

cultivated kenaf for linerboard production, Bio Resources 5 (2010) 1542–1553.

[27] T.Q. Hu (red.), Characterization of lignocellulosic materials, Blackwell Publishing Ltd. (2008).

[28] T.Q. Hu (red.), Chemical modification, properties, and usage of lignin, Kluwer Academic/Plenum Publishers (2002).

[29] X. Qiu, Q. Kong, M. Zhou, D. Yang, Aggregation behavior of sodium

[30] Y.-X. Pang, X.-Q. Qiu, D.-J. Yang, H.-M. Lou, Influence of oxidation,

hydroxymethylation and sulfomethylation on the physicochemical properties of calcium lignosulfonate, Colloids Surfaces A: Physicochemical and Engineering Aspects 312 (2008) 154–159

[31] M. Yan, D. Yang, Y. Deng, P. Chen, H. Zhou, X. Qiu, Influence of pH on the behavior of lignosulfonate macromolecules in aqueous solution, Colloids Surfaces A: Physicochemical and Engineering Aspects 371 (2010) 50–58.

[32] X.Q. Yonhong Deng, Yuan Wu, Yong Qian, Xinping Ouyang, Dongjie Yang, Adsorption and desorption behaviors of lignosulfonate during the self-assembly of multilayers, BioResources 5 (2010) 1178–1196.

[33] R. Vanholme, K. Morreel, J. Ralph, W. Boerjan, Lignin engineering, Current Opinion in Plant Biology 11 (2008) 278–85.

[34] R. Singh, A. Shukla, S. Tiwari, M. Srivastava, A review on delignification of lignocellulosic biomass for enhancement of ethanol production potential, Renewable and Sustainable Energy Reviews 32 (2014) 713–728.

[35] Y. Xu, K. Li, M. Zhang, Lignin precipitation on the pulp fibers in the ethanol-based organosolv pulping, Colloids Surfaces A: Physicochemical and

Engineering Aspects 301 (2007) 255–263.

[36] X. Pan, C. Arato, N. Gilkes, D. Gregg, W. Mabee, K. Pye, Z. Xiao, X. Zhang, J.

Saddler, Biorefining of softwoods using ethanol organosolv pulping: preliminary evaluation of process streams for manufacture of fuel-grade ethanol and co-products, Biotechnology and Bioengineering 90 (2005) 473–81.

[37] D. Pasquini, M.T.B. Pimenta, L.H. Ferreira, A.A.D.S. Curvelo, Extraction of lignin from sugar cane bagasse and Pinus taeda wood chips using ethanol–water mixtures and carbon dioxide at high pressures, Journal of Supercritical Fluids 36 (2005) 31–39.

[38] L. Jiménez, M.J. de la Torre, F. Maestre, J.L. Ferrer, I. Pérez, Organosolv pulping of wheat straw by use of phenol, Bioresource Technology 60 (1997) 199–205.

[39] A. Dembiras, Aqueous glycerol delignification of wood chips and ground wood, Bioresource Technology 63 (1998) 179–185.

[40] L. Jimenez, I. Perez, M.J. de la Torre, F. Lopez, J. Ariza, Use of formaldehyde for making wheat straw cellulose pulp, Bioresource Technology 72 (2000) 283–

288.

[41] Y. Pu, N. Jiang, A.J. Ragauskas, Ionic liquid as a green solvent for lignin, Journal of Wood Chemistry and Technology 27 (2007) 23–33.

[42] D. Fort, R.C. Remsing, R.P. Swatloski, P. Moyna, G. Moyna, R.D. Rogers, Can ionic liquids dissolve wood? Processing and analysis of lignocellulosic materials with 1-n-butyl-3-methylimidazolium chloride, Green Chemistry 9 (2007) 63.

[43] S.H. Lee, T. V Doherty, R.J. Linhardt, J.S. Dordick, Ionic liquid-mediated selective extraction of lignin from wood leading to enhanced enzymatic cellulose hydrolysis, Biotechnology and Bioengineering 102 (2009) 1368–76.

[44] X. Ouyang, L. Ke, X. Qiu, Y. Guo, Y. Pang, Sulfonation of alkali lignin and its potential use in dispersant for cement, Journal of Dispersion Science and Technology 30 (2009) 1–6.

[45] G. Milczarek, Lignosulfonate-modified electrodes: electrochemical properties and electrocatalysis of NADH oxidation, Langmuir 25 (2009) 10345–10353.

[46] C.J.L. Constantino, L.P. Juliani, V.R. Botaro, D.T. Balogh, M.R. Pereira, E.A.

Ticianelli, A. A. S. Curvelo, O. N. O. Jr, Langmuir-Blodgett films from lignins, Thin Solid Films 285 (1996) 191–194.

[47] A.M. Barros, A. Dhanabalan, C.J.L. Constantino, D.T. Balogh, O.N.O. Jr, Langmuir monolayers of lignins obtained with different isolation methods, Thin Solid Films 354 (1999) 215–221.

[48] C.J.L. Constantino, A. Dhanabalan, O.N.O. Jr, Experimental artifacts in the surface pressure measurement for lignin monolayers in Langmuir troughs, Review of Scientific Instruments 70 (1999) 3674.

[49] E. Evstigneyev, S. Shevchenko, H. Mayorova, A. Platonov, Polarographically active structural fragments of lignin. II. Dimeric model compounds and lignins, Journal of Wood Chemistry and Technology 24 (2005) 263–278.

[50] M.Y. Vagin, S.A. Trashin, A.A. Karyakin, Corrosion protection of steel by electropolymerized lignins, Electrochemistry Communications 8 (2006) 60–64.

[51] G. Milczarek, Preparation and characterization of a lignin modified electrode, Electroanalysis 19 (2007) 1411–1414.

[52] G. Milczarek, Lignosulfonate-modified electrode for electrocatalytic reduction of acidic nitrite, Electroanalysis 20 (2008) 211–214.

[53] G. Milczarek, Preparation, characterization and electrocatalytic properties of an iodine|lignin-modified gold electrode, Electrochimica Acta 54 (2009) 3199–

3205.

[54] H. Degefu, M. Amare, M. Tessema, S. Admassie, Lignin modified glassy carbon electrode for the electrochemical determination of histamine in human urine and wine samples, Electrochimica Acta 121 (2014) 307–314.

sensors from lignin-poly(propylene oxide) copolymers doped by carbon nanotubes, Analyst 138 (2013) 501–8.

[56] M.P. F.Graça, A. Rudnitskaya, F.A.C. Faria, D.V. Evtuguin, M.T.S.R. Gomes, J.

A. B.P. Oliveira, L.C. Costa, Electrochemical impedance study of the lignin-derived conducting polymer, Electrochimica Acta 76 (2012) 69–76.

[57] F.A. Faria, D. V Evtuguin, A. Rudnitskaya, M.T. Gomes, J.A. Oliveira, M.P.F.

Graça, L.C. Costa, Lignin-based polyurethane doped with carbon nanotubes for sensor applications, Polymer International 61 (2012) 788–794.

[58] R. Haggenmueller, S.S. Rahatekar, J.A. Fagan, J. Chun, M.L. Becker, R.R. Naik, Comparison of the quality of aqueous dispersions of single wall carbon

nanotubes using surfactants and biomolecules, Langmuir 24 (2008) 5070–8.

[59] Y. Liu, L. Gao, J. Sun, Noncovalent functionalization of carbon nanotubes with sodium lignosulfonate and subsequent quantum dot decoration, Journal of Physical Chemistry C 111 (2007) 1223–1229.

[60] N. Teng, I. Dallmeyer, J.F. Kadla, Effect of softwood kraft lignin fractionation on the dispersion of multiwalled carbon nanotubes, Industrial and Engineering Chemistry Research 52 (2013) 6311–6317.

[61] N.-Y. Teng, I. Dallmeyer, J.F. Kadla, Incorporation of multiwalled carbon nanotubes into electrospun softwood kraft lignin-based fibers, Journal of Wood Chemistry and Technology 33 (2013) 299–316.

[62] O. Rochez, G. Zorzini, J. Amadou, M. Claes, A. Richel, Dispersion of

multiwalled carbon nanotubes in water by lignin, Journal of Material Science 48 (2013) 4962–4964.

[63] X.X. Ge, J.H. Qiu, S.S. Xu, F. Yue, P.G. Song, Fabrication of lignin-wrapped carbon nanotubes and its dispersion in ABS Resin, Advanced Materials Research 455-456 (2012) 87–90.

[64] G. Milczarek, Kraft lignin as dispersing agent for carbon nanotubes, Journal of Electroanalytical Chemistry 638 (2010) 178–181.

[65] G. Milczarek, M. Nowicki, Carbon nanotubes/kraft lignin composite:

Characterization and charge storage properties, Materials Research Bulletin 48 (2013) 4032–4038.

[66] S.-K. Kim, Y.K. Kim, H. Lee, S.B. Lee, H.S. Park, Superior pseudocapacitive behavior of confined lignin nanocrystals for renewable energy-storage materials, ChemSusChem 7 (2014) 1094–101.

[67] G. Lota, G. Milczarek, The effect of lignosulfonates as electrolyte additives on the electrochemical performance of supercapacitors, Electrochemistry

Communications 13 (2011) 470–473.

[68] T. Jesionowski, Ł. Klapiszewski, G. Milczarek, Kraft lignin and silica as

precursors of advanced composite materials and electroactive blends, Journal of Materials Science 49 (2013) 1376–1385.

[69] T. Jesionowski, Ł. Klapiszewski, G. Milczarek, Structural and electrochemical properties of multifunctional silica/lignin materials, Materials Chemistry and Physics 147 (2014) 1–9.

[70] G. Milczarek, T. Rebis, J. Fabianska, One-step synthesis of

lignosulfonate-stabilized silver nanoparticles, Colloids and Surfaces B. Biointerfaces 105 (2013) 335–41.

[71] G. Milczarek, E. Konował, Zastosowanie kwasu ligninosulfonowego oraz jego soli do wytwarzania koloidalnego złota, Zgłoszenie patentowe nr 401719 (2012).

[72] F. Coccia, L. Tonucci, N. d’Alessandro, P. D’Ambrosio, M. Bressan, Palladium nanoparticles, stabilized by lignin, as catalyst for cross-coupling reactions in water, Inorganica Chimica Acta 399 (2013) 12–18.

[73] R.M. Buoro, R.P. Bacil, R.P. da Silva, L.C.C. da Silva, A.W.O. Lima, I.C.

Cosentino, Lignin-AuNp modified carbon paste electrodes – preparation, characterization, and applications, Electrochimica Acta 96 (2013) 191–198.

[74] A. Ciszewski, K. Sron, I. Stepniak, G. Milczarek, Nickel (II) lignosulfonate as precursor for the deposition of nickel hydroxide nanoparticles on a glassy carbon electrode for oxidative electrocatalysis, Electrochimica Acta 134 (2014) 355–

362.

[75] Y. Li, A.J. Ragauskas, Kraft lignin-based rigid polyurethane foam, Journal of Wood Chemistry and Technology 32 (2012) 210–224.

[76] H. Jeong, J. Park, S. Kim, J. Lee, N. Ahn, H. Roh, Preparation and

characterization of thermoplastic polyurethanes using partially acetylated kraft lignin, Fibers and Polymers 14 (2013) 1082–1093.

[77] C.A. Cateto, M.F. Barreiro, C. Ottati, M. Lopretti, A. E. Rodrigues, M.N.

Belgacem, Lignin-based rigid polyurethane foams with improved biodegradation, Journal of Cellular Plastics 50 (2013) 81–95.

[78] B.-L. Xue, J.-L. Wen, R.-C. Sun, Lignin-based rigid polyurethane foam reinforced with pulp fiber: synthesis and characterization, ACS Sustainable Chemistry and Engineering 2 (2014) 1474–1480.

[79] L. Yang, X. Wang, Y. Cui, Y. Tian, H. Chen, Z. Wang, Modification of renewable resources-lignin-by three chemical methods and its applications to polyurethane foams, Polymers for Advanced Technologies, artykuł w druku (2014).

polyesters of lignin-derived stable metabolic intermediate, 2-pyrone-4,6-dicarboxylic acid (PDC), Polymer Journal 41 (2009) 843–848.

[81] Y. Matsushita, T. Inomata, Y. Takagi, T. Hasegawa, K. Fukushima, Conversion of sulfuric acid lignin generated during bioethanol production from

lignocellulosic materials into polyesters with ɛ-caprolactone, Journal of Wood Science 57 (2011) 214–218.

[82] L. Mialon, R. Vanderhenst, A.G. Pemba, S.A Miller,

Polyalkylenehydroxybenzoates (PAHBs): biorenewable aromatic/aliphatic polyesters from lignin, Macromolecular Rapid Communications 32 (2011) 1386–

1392.

[83] F. Monteil-Rivera, M. Phuong, M. Ye, A. Halasz, J. Hawari, Isolation and characterization of herbaceous lignins for applications in biomaterials, Industrial Crops and Products 41 (2013) 356–364.

[84] F. Siahmed, A. Lounis, L. Faghi, Elaboration, characterization, and degradation of composite material: Lignocellulosic/unsaturated polyester, Journal of

Composite Materials 47 (2012) 2965–2972.

[85] S.-P. Huo, G.-M. Wu, J. Chen, G.-F. Liu, Z.-W. Kong, Curing kinetics of lignin and cardanol based novolac epoxy resin with methyl tetrahydrophthalic

anhydride, Thermochimica Acta 587 (2014) 18–23.

[86] G. Sun, H. Sun, Y. Liu, B. Zhao, N. Zhu, K. Hu, Comparative study on the curing kinetics and mechanism of a lignin-based-epoxy/anhydride resin system, Polymer 48 (2007) 330–337.

[87] Y. Matsushita, S. Yasuda, Preparation of anion-exchange resins from pine sulfuric acid lignin, one of the acid hydrolysis lignins, Journal of Wood Science 49 (2003) 423–429.

[88] N-E. Mansouri, Q. Yuan, F. Huang, Synthesis and characterization of kraft lignin- based epoxy resins, Bio Resources 6 (2011) 2492–2503.

[89] C. Sasso, D. Beneventi, E. Zeno, D. Chaussy, M. Petit-Conil, N. Belgacem, Polypyrrole and polypyrrole/wood-derived materials conducting composites: a review, Bio Resources 6 (2011) 3585–3620.

[90] C. Yang, P. Liu, Water-dispersed conductive polypyrroles doped with

lignosulfonate and the weak temperature dependence of electrical conductivity, Industrial and Engineering Chemistry Research 48 (2009) 9498–9503.

[91] L. Zhu, L. Wu, Y. Sun, M. Li, J. Xu, Z. Bai, Cotton fabrics coated with lignosulfonate-doped polypyrrole for flexible supercapacitor electrodes, RSC Advances 4 (2014) 6261.

[92] D.H. Nagaraju, T. Rebis, R. Gabrielsson, A. Elfwing, G. Milczarek, O. Inganäs,

interpenetrating networks enhanced by electroactive dopants, Advanced Energy Materials 4 (2013) 1–7.

[93] S. Admassie, A. Elfwing, E.W.H. Jager, Q. Bao,O. Inganäs, A renewable biopolymer cathode with multivalent metal ions for enhenced charge storage, Journal of Materials Chemistry A 2 (2014) 1974–1979.

[94] T. Viswanathan, Conducting compositions of matter, Patent nr US6059999 A (2000).

[95] A. Sakhri, F.X. Perrin, A. Benaboura, E. Aragon, S. Lamouri, Corrosion protection of steel by sulfo-doped polyaniline-pigmented coating, Progress in Organic Coatings 72 (2011) 473–479.

[96] G. Gupta, N. Birbilis, A. B. Cook, A. S. Khanna,

Polyaniline-lignosulfonate/epoxy coating for corrosion protection of AA2024-T3, Corrosion Science 67 (2013) 256–267.

[97] G. Gupta, A.S. Khanna, N. Birbilis, Investigation on anticorrosion performance of epoxy based lignosulphonate doped polyaniline-poly(acrylamide co-acrylic acid) coating for AA2024 alloy, Progress in Organic Coatings, artykuł w druku (2012)

[98] L. Shao, J.H. Qiu, H.X. Feng, M.Z. Liu, G.H. Zhang, J.B. An, Structural investigation of lignosulfonate doped polyaniline, Synthetic Metals 159 (2009) 1761–1766.

[99] Q. Lü, C. Wang, X. Cheng, One-step preparation of conductive polyaniline-lignosulfonate composite hollow nanospheres, Microchimica Acta 169 (2010) 233–239.

[100] S. Roy, J.M. Fortier, R. Nagarajan, S. Tripathy, J. Kumar, L. A. Samuelson, Biomimetic synthesis of a water soluble conducting molecular complex of polyaniline and lignosulfonate, Biomacromolecules 3 (2002) 937–41.

[101] J. Zheng, L. Ma, M. Gan, J. Yan, Z. Li, X. Shen, J. Zhang, Facile preparation of soluble and conductive polyaniline in the presence of lignosulfonate and a constant magnetic field (0.4 T), Journal of Applied Polymer Science 131 (2014) 1–7.

[102] S.E. Bourdo, B.C. Berry, T. Viswanathan, Catalytic effects of selected transition metal ions in the synthesis of lignosulfonic acid doped polyaniline, Journal of Applied Polymer Science 98 (2005) 29–33.

[103] J. Dong, Q. Shen, Comparison of polyanilines doped by lignosulfonates with three different ions, Journal of Applied Polymer Science 126 (2012) 10–16.

[104] K.K. Taylor, C.V Cole, R. Soora, J.C. Dilday, A.M. Hill, B. Berry, T.

[105] Z.-W. He, Q.-F. Lü, J.-Y. Zhang, Facile preparation of hierarchical polyaniline-lignin composite with a reactive silver-ion adsorbability, ACS Applied Materials and Interfaces 4 (2012) 369–74.

[106] Z. He, L. He, J. Yang, Q. Lu, Removal and recovery of Au (III) from aqueous solution using a low- cost Lignin-based biosorbent, Industrial and Engineering Chemistry Research 52 (2013) 4103–4108.

[107] X. Wang, S. Ray, R.P. Cooney, P. A. Kilmartin, G.I.N. Waterhouse, A.J. Easteal, Synthesis and characterization of poly(o-methoxyaniline)–lignosulfonate

composites, Synthetic Metals 162 (2012) 1084–1089.

[108] L.G. Paterno, C.J.L. Constantino, O.N. Oliveira, L.H.C. Mattoso, Self-assembled films of poly(o-ethoxyaniline) complexed with sulfonated lignin, Colloids and Surfaces B: Biointerfaces 23 (2002) 257–262.

[109] Q.-F. Lü, J.-J. Luo, T.-T. Lin, Y.-Z. Zhang, Novel lignin–poly(N -methylaniline) composite sorbent for silver ion removal and recovery, ACS Sustainable

Chemistry and Engineering 2 (2014) 465–471.

[110] Q.-F. Lü, J.-Y. Zhang, J. Yang, Z.-W. He, C.-Q. Fang, Q. Lin, Self-assembled poly(N-methylaniline)-lignosulfonate spheres: from silver-ion adsorbent to antimicrobial material, Chemistry A European Journal 19 (2013) 10935–44.

[111] Q.-F. Lü, J.-Y. Zhang, Z.-W. He, Controlled preparation and reactive silver-ion sorption of electrically conductive poly(N-butylaniline)-lignosulfonate composite nanospheres, Chemistry A European Journal 18 (2012) 16571–16579.

[112] J. Dong, Q. Shen, Enhancement in solubility and conductivity of polyaniline with lignosulfonate modified carbon nanotube, Journal of Polymer Science B:

Polymer Phisics 47 (2009) 2036–2046.

[113] Q. Shen, M. Mezgebe, F. Li, J.-Q. Dong, Liquids adsorption behavior and surface properties of polyanilines doped by lignosulfonate-modified carbon nanotubes, Colloids Surfaces A: Physicochemical and Engineering Aspects 390 (2011) 212–

215.

[114] J. Yang, J. Wu, Q. Lu, T. Lin, Facile preparation of lignosulfonate −graphene oxide −polyaniline ternary nanocomposite as an effective adsorbent for Pb(II) ions, ACS Sustainable Chemistry and Engineering 2 (2014) 1203–1211.

[115] J.W. Schultze, H. Karabulut, Application potential of conducting polymers, Electrochimica Acta 50 (2005) 1739–1745.

[116] G. Inzelt, M. Pineri, J.. Schultze, M. Vorotyntsev, Electron and proton

conducting polymers: recent developments and prospects, Electrochimica Acta 45 (2000) 2403–2421.

[117] J. Heinze, B.A. Frontana-Uribe, S. Ludwigs, Electrochemistry of conducting polymers – persistent models and new concepts, Chemical Reviews 110 (2010) 4724–4771.

[118] G. Inzelt (red.), Conducting Polymers, Rozdział 2, Springer Berlin Heidelberg, (2012) 7–82.

[119] Z. Song, H. Zhou, Towards sustainable and versatile energy storage devices: an overview of organic electrode materials, Energy and Environmental Science 6 (2013) 2280–2301.

[120] T.A. Skotheim, R. L. Elsenbaumer, J.R. Reynolds (red.), Handbook of conducting polymers, Rozdział 20 Electrochemistry of cinducting polymers, Wydanie 2, Marcel Dekker (1999) 531–588.

[121] G.G. Min, S.-J. Choi, S. Bin Kim, S.-M. Park, Electrochemistry of conductive polymers 44: A comparative study on electrochemically polymerized

polythiophenes from thiophene, bithiophene, and terthiophene, Synthetic Metals 159 (2009) 2108–2116.

[122] T.A. Skotheim, J.R. Reynolds, Conjugated polymers. Theory, synthesis, properties and charactrization, Rozdział 18 Electrochemistry of Conducting, Wydanie 3, Taylor and Francis (2007) 18.1–18.29.

[123] C. Debiemme-Chouvy, T.T.M. Tran, An insight into the overoxidation of polypyrrole materials, Electrochemistry Communications 10 (2008) 947–950.

[124] Y. Li, Y. Fan, Doping competition of anions during the electropolymerization of pyrrole, Synthetic Metals 79 (1996) 225–227.

[125] J. Leger, M. Berrgren, S. Carter (red.), Iontronics: ionic carriers in organic electronic materials and devices, Rozdział 1 Electrochemistry of conjugated polymers, CRC Press (2010) 2–25.

[126] N.K. Guimard, N. Gomez, C.E. Schmidt, Conducting polymers in biomedical engineering, Progress in Polymer Science 32 (2007) 876–921.

[127] R. Ansari Khalkhali, Electrochemical synthesis and characterization of electroactive conducting polypyrrole polymers, Russian Journal of Electrochemistry 41 (2005) 950–955.

[128] H.-K. Song, G.T.R. Palmore, Redox-Active Polypyrrole: Toward polymer-based batteries, Advanced Materials 18 (2006) 1764–1768.

[129] I. Sultana, M.M. Rahman, J. Wang, C. Wang, G.G. Wallace, H.-K. Liu, All-polymer battery system based on polypyrrole (PPy)/para (toluene sulfonic acid) (pTS) and polypyrrole (PPy)/indigo carmine (IC) free standing films,

Electrochimica Acta 83 (2012) 209–215.

[130] I. Sultana, M.M. Rahman, J. Wang, C. Wang, G.G. Wallace, H.-K. Liu, Indigo carmine (IC) doped polypyrrole (PPy) as a free-standing polymer electrode for lithium secondary battery application, Solid State Ionics 215 (2012) 29–35.

[131] Y. Wang, C. Yang, P. Liu, Acid blue AS doped polypyrrole (PPy/AS) nanomaterials with different morphologies as electrode materials for supercapacitors, Chemical Engineering Journal 172 (2011) 1137–1144.

[132] Y.T. Hong, S.B. Rhee, Preparation of Polypyrrole with Ferrocenic Polymer Dopants, Synthetic Metals 69 (1995) 515–516.

[133] T. Inoue, J.R. Kirchhoff, Electrochemical detection of thiols with a coenzyme pyrroloquinoline quinone modified electrode, Analytical Chemistry 72 (2000) 5755–5760.

[134] T.-J. Li, C.-Y. Lin, A Balamurugan, C.-W. Kung, J.-Y. Wang, C.-W. Hu, Modification of glassy carbon electrode with a polymer/mediator composite and its application for the electrochemical detection of iodate, Analytica Chimica Acta 737 (2012) 55–63.

[135] E.T. Kang, K.G. Neoh, K. L. Tan, Polyaniline: A polymer with many intrinsic redox states, Progress in Polymer Science 23 (1998) 277–324.

[136] M.M. Gvozdenovi, B.Z. Jugovi, J.S. Stevanovi, T. Lj, B.N. Grgur,

Electrochemical polymerization of aniline, Electropolymerization, E. Schab-Balcerzak (red.), ISBN 978-953-307-693-5, InTech, (2011).

[137] S. Xu, S.D. Minteer, Pyrroloquinoline quinone-qependent enzymatic bioanode:

incorporation of the substituted polyaniline conducting polymer as a mediator, ACS Catalysis 4 (2014) 2241–2248.

[138] A. Malinauskas, Self-doped polyanilines, Journal of Power Sources 126 (2004) 214–220.

[139] J.-Y. Wang, L.-C. Chen, K.-C. Ho, Synthesis of redox polymer nanobeads and nanocomposites for glucose biosensors, ACS Applied Materials and Interfaces 5 (2013) 7852–61.

[140] C.R. Raj, S. Chakraborty, Carbon nanotubes-polymer-redox mediator hybrid thin film for electrocatalytic sensing, Biosensors and Bioelectronics 22 (2006) 700–6.

[141] B. Nagel, A. Warsinke, M. Katterle, Enzyme activity control by responsive redox polymers, Langmuir 23 (2007) 6807–6811.

[142] T.O. Tran, E.G. Lammert, J. Chen, S. A. Merchant, D.B. Brunski, J.C. Keay, M.B. Johnson, D.T. Glatzhofer, D.W. Schmidtke, Incorporation of single-walled carbon nanotubes into ferrocene-modified linear polyethylenimine redox polymer films, Langmuir 27 (2011) 6201–6210.

[143] R. A. Durst, A. J. Bäumner, R. W. Murray , R. P. Buck, C.P. Andrieux, Chemically modified electrodes: Recommended terminology and definitions, Pure and Applied Chemistry 69 (1997) 1317–1323.

[144] A. Ciszewski, G. Milczarek, Polyeugenol-modified platinum electrode for selective detection of dopamine in the presence of ascorbic Acid, Analytical Chemistry 71 (1999) 1055–1061.

[145] A. Ciszewski, G. Milczarek, Preparation and general properties of chemically modified electrodes based on electrosynthesized thin polymeric films derived from eugenol, 13 (2001) 860–867.

[146] R. Gracia, D. Mecerreyes, Polymers with redox properties: materials for batteries, biosensors and more, Polymer Chemistry 4 (2013) 2206–2214.

[147] F.B. Kaufman, E.M. Engler, Solid-state spectroelectrochemistry of cross-linked donor bound polymer films, Journal of the American Chemical Society 101 (1979) 547–549.

[148] F.B. Kaufman, a. H. Schroeder, E.M. Engler, S.R. Kramer, J.Q. Chambers, Ion and electron transport in stable, electroactive tetrathiafulvalene polymer coated electrodes, Journal of the American Chemical Society 102 (1980) 483–488.

[149] R.W. Murray, Modified electrodes. Chemically modified electrodes for

[149] R.W. Murray, Modified electrodes. Chemically modified electrodes for