• Nie Znaleziono Wyników

Determination of positive stable realizations for discrete-time linear systems / PAR 2/2012 / 2012 / Archiwum / Strona główna | PAR Pomiary - Automatyka - Robotyka

N/A
N/A
Protected

Academic year: 2021

Share "Determination of positive stable realizations for discrete-time linear systems / PAR 2/2012 / 2012 / Archiwum / Strona główna | PAR Pomiary - Automatyka - Robotyka"

Copied!
6
0
0

Pełen tekst

(1)

Determination of positive stable realizations

for discrete-time linear systems

Tadeusz Kaczorek

Faculty of Electrical Engineering, Białystok University of Technology, Białystok, Poland

Abstract: Sufficient conditions for the existence of positive stable

realizations for given proper transfer matrices are established. Two methods are proposed for determination of the positive stable realizations for given proper transfer matrices. The effec-tives of the proposed procedures is demonstrated on numerical examples.

Keywords: determination, positive, stable, discrete-time

1. Introduction

A dynamical system is called positive if its trajectory starting from any nonnegative initial state remains forever in the positive orthant for all nonnegative inputs. An over-view of state of the art in positive theory is given in the monographs [2, 6]. Variety of models having positive be-havior can be found in engineering, economics, social sci-ences, biology and medicine, etc.

An overview on the positive realization problem is giv-en in [1, 2, 6]. The realization problem for positive con-tinuous-time and discrete-time linear systems has been considered in [3, 4, 7, 10, 11] and the positive minimal realization problem for singular discrete-time systems with delays in [12]. The realization problem for fractional linear systems has been analyzed in [8, 15] and for positive 2D hybrid systems in [9]. The existence of positive stable realizations with system Metzler matrices for continuous-time linear systems has been investigated in [13, 14].

In this paper sufficient conditions will be established for the existence of positive stable realizations of discrete-time linear systems and two methods for determination of the positive stable realizations of proper transfer matrices will be proposed.

The paper is organized as follows. In section 2 some de-finitions and theorems concerning positive discrete-time linear systems are recalled and the problem formulation is given. In section 3 two methods for determinations of positive stable realizations for given transfer functions are proposed. An extension of the method 1 to multi-input multi-output discrete-time linear systems is proposed in section 4. Concluding remarks and open problems are given in section 5.

The following notation will be used: ℜ - the set of real numbers, n m× - the set of n×m real matrices, n m×

+ ℜ - the set of n×m matrices with nonnegative entries and

1 n n× + + ℜ = ℜ , n m( ) z ×

- the set of n×m real matrices in z with real coefficients, n m[ ]

z ×

ℜ - the set of n×m polyno-mial matrices in z with real coefficients, In- the n× n

identity matrix.

2. Preliminaries and the problem

formulation

Consider the discrete-time linear system 1 i i i x+ =Ax +Bu , iZ+ (2.1a) i i i y =Cx +Du (2.1b) where n i x ∈ℜ , m i u ∈ℜ , p i

y ∈ℜ are the state, input and output vectors and n n

A∈ℜ× , n m

B∈ ℜ × , p n C ∈ ℜ , × p m

D∈ ℜ× .

Definition 2.1. The system (2.1) is called (internally) positive if n

i

x ∈ℜ , + p

i

y ∈ℜ , i Z++ for any initial condi-tions 0

n

x ∈ℜ and all inputs + m i

u ∈ℜ , i Z++.

Theorem 2.1. [1, 6] The system (2.1) is positive if and only if n n A∈ℜ+× , n m B∈ℜ+× , p n C∈ℜ , +× p m D∈ℜ+× . (2.2) The transfer matrix of the system (2.1) is given by

1

( ) [n ]

T z =C I zA B− + . (2.3) D The transfer matrix is called proper if

lim ( ) p m

z T z K ×

→∞ = ∈ℜ (2.4) and it is called strictly proper if K = . 0

Definition 2.2. Matrices (2.2) are called a positive reali-zation of transfer matrix ( )T z if they satisfy the equality (2.3).

The positive system (2.1) is called asymptotically stable (shortly stable) if

lim i 0

i→∞x = for all initial conditions 0 n

x ∈ℜ . (2.5) +

Theorem 2.2. [1, 6] The positive system (2.1) is asymp-totically stable if and only if all coefficients of the polyno-mial 1 1 1 0 ( ) det[ ( 1) ] n n ... A n n p z = I z+ −A =z +az − + +a z+ a (2.6) are positive, i.e. ak> for 0 k =0,1,...,n− . 1

The problem under considerations can be stated as follows. Given a rational matrix ( ) p m( )

T z ∈ℜ× z , find a positive stable its realization (2.2).

In this paper sufficient conditions for the existence of positive stable realization (2.2) of a given ( ) p m( )

T z ∈ℜ× z will be established and procedures for determination of positive stable realizations (2.2) will be proposed.

(2)

3. Problem solution for single-input

single-output systems

3.1. Method 1

Consider the positive single-input single-output (SISO) system (2.1) with the transfer function

1 1 1 0 1 1 1 0 ... ( ) ... n n n n n n n b z b z b z b T z z a z a z a − − − − + + + + = − − − − . (3.1)

For given (3.1) we can find the matrix D by the use of the formula [6] lim ( ) n z D T z b →∞ = = (3.2) and the strictly proper transfer function

1 1 1 1 0 1 1 1 0 ( ) ( ) [ ] ... ( ) ( ) ... sp n n n n n n T z T z D C I z A B b z b z b n z d z z a z a z a − − − − − = − = − + + + = = − − − − (3.3) where k k k n b = +b a b , k=0,1,...,n− . (3.4) 1 Note that if bk ≥ for 0 k =0,1,...,n and ak≥ for 0

0,1,..., 1

k= n− then bk ≥ for 0 k=0,1,...,n− . 1

Theorem 3.1. There exists a positive stable realization of the form 0 1 2 1 0 1 0 ... 0 0 0 1 ... 0 0 0 0 ... 1 ... n A a a a a         =            , 0 0 0 1 B         =         , 0 1 2 ... n 1 C = b b b b , D=[ ]bn . (3.5a) of (3.1) if the following conditions are satisfied

1) ak≥ for 0 k =0,1,...,n− , 1 (3.6a) 2) bk ≥ for 0 k=0,1,...,n, (3.6b) 3) a0+ + +a1 ... an1< . 1 (3.6c)

Proof. If the conditions (3.6a) and (3.6b) are met then

n n

A∈ℜ+× , n

B∈ℜ , + C 1 n× +

∈ℜ , D≥0. By Theorem 2.2 the realization (3.5) is stable if and only if all coefficients of the polynomial 1 1 1 0 1 1 1 1 1 1 0 det[ ( 1) ] ( 1) ( 1) ... ( 1) ( ) ... ( ( 1) ... ) (1 ... ) n n n n n n n n n I z A z a z a z a z n a z n a n a z a a a − − − − − − + − = + − + − − + − = + − + + − − − − + − − − − (3.7)

are positive, i.e.

1 1 0 1 1 1 1 ... 0 ( 1) ... 0 0 n n n a a a n a n a n a − − − − − − − > − − − − > − >  (3.8)

Note that the conditions (3.8) are satisfied if (3.6c) is met. Using (3.5) and (2.3) we obtain

1 1 0 1 2 1 0 1 2 1 0 1 2 1 1 1 1 0 1 1 1 ( ) [ ] 1 0 ... 0 0 0 1 ... 0 0 ... 0 0 0 ... 1 0 ... 1 1 1 ... ... n n n n n n n n n n n n T z C I z A B D z z b b b b b a a a z a z b b b b b z a z a z a z b z − − − − − − − − − − = − +  −                  =     + −                     = + − − − −     + =        1 1 0 1 1 0 1 1 1 1 0 1 1 0 ... ... ... ... n n n n n n n n n n n b z b b z b z b z b b z a z a z a z a z a z a − − − − − − + + + + + + + = − − − − − − − − (3.9) This completes the proof.

If the conditions (3.6) are met then the positive stable realization (3.5) can be computed by the use of the follow-ing procedure.

Procedure 3.1.

Step 1. Using (3.2) find the matrix D and the strictly proper transfer function (3.3).

Step 2. Using (3.5) find the matrices n n

A∈ℜ+× , n B∈ℜ , + 1 n

C∈ℜ . +×

Example 3.1. Using Procedure 3.1 find the positive stable realization of the transfer function

3 2 3 2 2 3 2 ( ) 0.7 0.1 0.08 z z z T z z z z + + + = − − − . (3.10)

The transfer function (3.10) satisfy the conditions (3.6) since a0=0.08, a1=0.1, a2=0.7, b3= , 2 2 3 b = , 1 1 b = , 0 2 b = and a0+ +a1 a2=0.88< . 1 Step 1. Using (2.2) for (3.3) we obtain

lim ( ) 2 z

D T z

→∞

= = (3.11) and the strictly proper transfer function

3 2 3 2 2 3 2 2 3 2 ( ) ( ) 2 0.7 0.1 0.08 4.4 1.2 2.16 0.7 0.1 0.08 sp z z z T z T z D z z z z z z z z + + + = − = − − − − + + = − − − (3.12)

Step 2. The realization (3.5a) of (3.10) has the form

0 1 0 0 0 1 0.08 0.1 0.7 A     =       , 0 0 1 B     =       , C=[2.16 1.2 4.4], D=[2].(3.13)

The realization (3.13) is asymptotically stable since the condition (3.6c) is met. the poles of (3.10) are:

1 0.9074

z = , z2= −0.1037+j0.282, z3= −0.1037−j0.282.

Remark 3.1. In a similar way as in the proof of Theorem 3.1 it can be shown that the following matrices are also the

(3)

0 1 2 1 0 0 ... 0 1 0 ... 0 0 1 ... 0 0 0 ... 1 n a a A a a         =            , 0 1 2 1 n b b B b b         =        , 0 0 ... 0 1 C =   , D=[ ]bn (3.14) 1 2 ... 1 0 1 0 ... 0 0 0 1 ... 0 0 0 0 ... 1 0 n n a a a a A − −         =              , 1 0 0 0 B         =          , 1 ... 2 1 0 n C = b b b b , D=[ ]bn (3.15) 1 2 1 0 1 0 ... 0 0 1 ... 0 0 0 ... 1 0 0 ... 0 n n a a A a a − −         =            , 1 2 1 0 n n b b B b b − −         =            , 1 0 ... 0 0 C=   , D=[ ]bn . (3.16) 3.2. Method 1

Let the distinct poles z z1, ,...,2 zn of the transfer matrix (3.1) are real positive and satisfy the conditions

1 k

z < for k =1,2,...,n. (3.17)

Theorem 3.2. There exists a positive stable realization of

the form 1 1 1 blockdiag[ ... ], , 1 [ ... ], [ ] n n n A z z B C c c D b     = =       = =  (3.18)

of (3.1) if the following conditions are satisfied:

1) The real positive poles z z1, ,...,2 zn of the transfer matrix (3.1) satisfy the condition (3.17).

2) The strictly proper transfer function (3.3) can be de-composed in the form

1 ( ) n k sp k k c T z z z = = −

(3.19a) where 1, ( ) lim( ) ( ) ( ) k k k z z k sp n k i i i k n z c z z T z z z → = ≠ = − = −

(3.19b) with ck≥0, k = 1,2,…,n.

3) The coefficient bn of (3.1) is nonnegative.

Proof. If the condition 1) is met then

n n

A∈ℜ+× is asymp-totically stable. If by assumption 2) ck≥ , k = 1,2,…,n 0 then 1 n

C∈ℜ and the assumption 3) implies D+× ∈ℜ . + Using (3.18) we obtain 1 1 1 2 1 1 2 1 1 [ ] 0 ... 0 1 0 ... 0 [ ... ] 1 0 0 ... 1 0 ... 0 1 1 0 ... 0 [ ... ] 1 1 0 0 ... ( ) n n n n n n n n k n k k C I z A B D z z z z c c b z z z z z z c c b z z c b T z z z − − = − +  −         =  +       −                   − =    +              = + = −

          (3.20)

Therefore, the conditions 1), 2) and 3) are satisfied and there exists a positive stable realization of the transfer function (3.1). □

If the assumptions of Theorem 3.2 are satisfied then the positive stable realization (3.18) can be computed by the use of the following procedure.

Procedure 3.2.

Step 1. Using (3.2) find the matrix D and the strictly proper transfer function (3.3).

Step 2. Using formula (3.19) find ck for k = 1,2,…,n.

Step 3. Find the desired realization (3.18).

Example 4.1. Find a positive stable realization (3.18) of the transfer function

2 3 2 4 3.9 0.94 ( ) 1.5 0.74 0.12 z z T z z z z − + = − + − (3.21)

The poles of (3.21) are z1=0.4, z2=0.5, z3 =0.6 and satisfy the condition (3.17). Using Procedure 3.2 we ob-tain the following.

Step 1. By (3.2) D = [0] since the transfer function (3.21) is strictly proper.

Step 2. Using (3.19) we obtain 2 1 1 1 2 1 3 ( ) 4(0.4) 3.9(0.4) 0.94 1 ( )( ) ( 0.1)( 0.2) n z c z z z z − + = = = − − − − (3.22a)

(4)

2 2 2 2 1 2 3 ( ) 4(0.5) 3.9(0.5) 0.94 1 ( )( ) (0.1)( 0.1) n z c z z z z − + = = = − − − (3.22b) 2 3 3 3 2 3 1 ( ) 4(0.6) 3.9(0.6) 0.94 2 ( )( ) (0.1)(0.2) n z c z z z z − + = = = − − (3.22c)

Step 3. The desired positive stable realization (3.18) of the transfer function (3.21) has the form

0.4 0 0 1 0 0.5 0 , 1 , [1 1 2] 0 0 0.6 1 A B C         = =  =         . (3.23)

Note that the transfer function (3.21) does not satisfy the conditions of Theorem 3.1 and the desired realization can not be determined by the use of Procedure 3.1.

4. Problem solution for single-input

single-output systems

Consider the proper transfer matrix of the form

11 1, ,1 , ( ) ... ( ) ( ) ... ( ) ( ) ... ( ) m p m p p m T z T z T z z T z T z ×     = ∈ℜ       , , , , ( ) ( ) ( ) i j i j i j n z T z d z = ,i=1,...,p; j =1,...,m (4.1) where ℜp×m(z) is the set of proper rational real matrices. The matrix D of desired positive stable realization can be found by the use of the formula

lim ( ) z

D T z

→∞

= (4.2) The strictly proper transfer matrix

( ) ( ) sp

T z =T zD can be written in the form

1, 11 1 1 ,1 , 1 ( ) ( ) ... ( ) ( ) ( ) ... ( ) ( ) ( ) ( ) ... ( ) ( ) m m sp p p m m N z N z d z d z T z N z D z N z N z d z d z −         = =           (4.3a) where 11 1, ,1 , 1 ( ) ... ( ) ( ) ... [ ], ( ) ... ( ) ( ) diag[ ( ) ... ( )] [ ], m p m p p m m m m N z N z N z z N z N z D z d z d z z × ×     = ∈ℜ     = ∈ℜ   (4.3b) 1 1 1 0 ,( ) , ... , ,, 1,..., ; 1,..., j j d d i j i j i j i j N s =cz − + +c z+c i= p j= m(4.3c) 1 , 1 ,1 ,0 ( ) j j ... , 1,..., j d d j j d j j d z =za z − − −a za j= m (4.3d)

Theorem 4.1. There exists a positive stable realization of the form 1 1 ,0 ,1 ,2 , 1 1 1 0 1 0 1 11 11 11 1, 1, 1, blockdiag[ ... ], 0 1 0 ... 0 0 0 1 ... 0 , 1,..., ; 0 0 0 ... 1 ... 0 0 blockdiag[ ... ], , 1,..., ; 0 1 ... ... ... j j m j j j j j d d m j d m m A A A A j m a a a a B b b b j m c c c c c c C − − =         = =                 = = ∈ℜ =       =       1 1 1 1 0 1 0 1 ,1 ,1 ,1 , , , ... ... ... ... ... ... m m d m d d p p p p m p m p m c c c c c c − − −                   (4.4)

of the transfer matrix (4.1) if the following conditions are satisfied 1) aj k, ≥ for 0 j =1,...,m k =0,1,...,dj − , (4.5a) 1 2) k, 0 i j c ≥ for i =1,...,p, j=1,...,m; k=0,1,...,dj − , 1 (4.5b) 3) 0 1 ... , 1 1 j j j j d a +a + +a < for j =1,...,m, (4.5c) 4) lim ( ) ( ) p m z T z T × + →∞ = ∞ ∈ℜ . (4.5d)

Proof. If the conditions (4.5a), (4.5b) and (4.5d) are met

then from (4.4) we have n n

A∈ℜ+× , n

B∈ℜ , + C 1 n× + ∈ℜ and p m

D∈ℜ+× . By Theorem 2.2 the matrix Aj j=1,...,m is

asymptotically stable if the condition (4.5c) is satisfied and this implies the asymptotic stability of the matrix (4.4a). From (4.3d) and (4.3c) we have

0 1 , 1 ( ) j [ ... ] 1,..., j d j j j j d j d z =za a a Z j= m (4.6) and 1 0 1 ,( ) [ , , ... , ] 1,..., ; 1,..., j d i j i j i j i j j N z = c c cZ i = p j = m(4.7) where [1 ... dj 1]T j Z = z z − , j=1,...,m.

Knowing d zj( ) and using (4.6) we may find the matrix Aj

1,...,

j= m and the matrix (4.4a). Using (4.7) we may find the matrix C since

( )

N z =CZ (4.8) whereZ =blockdiag [ ,Z Z1 2,...,Zn].

We shall show that the matrices (4.4a), (4.4b) and (4.4c) are the realization of the strictly proper transfer matrix (4.3a). It is easy to verify that

( ) [ ] , 1,..., j j n j j b d z = I zA Z j = m and ( ) [ n ] BD z = I zA Z (4.9) where 1 ( ) diag [ d,..., dm] m D z = z zA Z and 0 1 0 , 1 diag [ , ,..., ], [ ... ], 1,..., j m m j j j d A = a a a a = a a j= m.(4.10) Premultiplying (4.9) by [ ]1 n C I zA− and postmultiplying by D−1( )z and using (4.8) we obtain

1 1 1

[n ] ( ) ( ) ( ) sp( )

C I zA B− =CZDz =N z Dz =T z This completes the proof.

(5)

If the conditions of Theorem 4.1 are satisfied then the positive stable realization of the transfer matrix (4.1) can be found by the use of the following procedure.

Procedure 4.1.

Step 1. Using (4.2) we find the matrix (4.2).

Step 2. Find the common denominators ( ) 1,...,

j

d z j= m and write the strictly proper transfer matrix in the form (4.3a).

Step 3. Using (4.6) find the matrices A1,…,An and the

matrix (4.4a).

Step 4. Using (4.7) or (4.8) find the matrix C.

Example 4.1. Find a positive stable realization of the transfer matrix 2 2 2 2 2 2 2 0.8 0.2 2 0.4 0.2 0.2 0.1 0.3 0.2 ( ) 2 0.2 0.7 0.4 0.2 0.1 0.3 0.2 z z z z z z z z T z z z z z z z z  + + + +      =  + + +      . (4.11)

The proper transfer matrix (4.11) satisfies the conditions of

Theorem 4.1. Using Procedure 4.1 we obtain the follow-ing.

Step 1. Applying (4.2) to (4.11) we obtain 1 2 lim ( ) 0 1 z D T z →∞   = =     (4.12) Step 2. The strictly proper transfer matrix has the form

2 2 1 2 2 0.3 0.6 0.2 0.1 0.3 0.2 ( ) ( ) ( ) ( ) 2 0.2 0.6 0.2 0.1 0.3 0.2 sp z z z z z z T s T s D N z D z z z z z z z −  + +      = − = = + +       (4.13a) where 2 2 0.3 0.6 0.2 0.1 0 ( ) , ( ) 2 0.2 0.6 0 0.3 0.2 z z z z N z D z z z z z    + +  − − = + +  =   − −      . (3.13b) Step 3. Using (4.4a), (4.6) and (4.13b) we obtain

1 1 1 2 0 1 0 1 , , 0.1 0.2 0.2 0.3 0 1 0 0 0 0.1 0.2 0 0 0 0 0 0 1 0 0 0.2 0.3 A A A A A     =  =             =  =       (4.14)

Step 4. Using (4.8) and (4.13b) we obtain 1 0 0.3 0.6 0.3 1 0.6 1 0 ( ) 2 0.2 0.6 0.2 2 0.6 1 0 1 0 z z z N z CZ z z z      + +    = + +  =   =          and 0.3 1 0.6 1 0.2 2 0.6 1 C=    . (4.15) The matrix B defined by (4.4b) has the form

1 2 0 0 0 1 0 0 0 0 0 1 b B b        =  =       . (4.16)

The desired positive stable realization of the transfer ma-trix (4.11) is given by (4.14), (4.16), (4.15) and (4.12).

Remark 4.1. The presented method can be considered as an extension of the Method 1 to positive stable multi-input multi-output discrete-time linear systems. Using the idea of Gilbert method [5, 16] it is also possible to extend the Method 2 to multi-input multi-output positive stable dis-crete-time linear systems.

5. Problem solution for single-input

single-output systems

Sufficient conditions for the existence of positive stable realizations of discrete-time linear systems have been es-tablished. Two different methods for determination of the positive stable realizations for given proper transfer func-tions have been proposed. The proposed procedures for determination of the positive realizations have been dem-onstrated on numerical examples. An open problem is formulation of necessary and sufficient conditions for exis-tence of positive stable realizations of the linear systems. An open problem is an extension of the proposed method for positive fractional linear systems [15].

Acknowlegments

This work was supported by National Centre of Science in Poland under work no. NN514 6389 40.

References

1. L. Benvenuti and L. Farina: “A tutorial on the posi-tive realization problem,” IEEE Trans. Autom. Con-trol, vol. 49, no. 5, 2004, 651-664.

2. L. Farina and S. Rinaldi S.: “Positive Linear Sys-tems,” Theory and Applications, J. Wiley, New York, 2000.

3. T. Kaczorek: “A realization problem for positive continuous-time linear systems with reduced numbers of delays,” Int. J. Appl. Math. Comp. Sci. 2006, Vol. 16, No. 3, pp. 325-331.

4. T. Kaczorek: “Computation of realizations of discrete-time cone systems,” Bull. Pol. Acad. Sci. Techn. vol. 54, no. 3, 2006, 347-350.

5. T. Kaczorek: “Linear Control Systems,” vol. 1, Re-search Studies Press, J. Wiley, New York 1992. 6. T. Kaczorek: “Positive 1D and 2D Systems,”

Springer-Verlag, London, 2002.

7. T. Kaczorek: “Polynomial and Rational Matrices,” Springer-Verlag, London, 2009.

8. T. Kaczorek: “Realization problem for fractional continuous-time systems,” Archives of Control Sci-ences, vol. 18, no. 1, 2008, 43-58.

(6)

9. T. Kaczorek: “Realization problem for positive 2D hybrid systems,” COMPEL, vol. 27, no. 3, 2008, 613-623.

10. T. Kaczorek: “Realization problem for positive multi-variable discrete-time linear systems with delays in the state vector and inputs,” Int. J. Appl. Math. Comp. Sci., vol. 16, no. 2, 2006, 101-106.

11. T. Kaczorek: “Realization problem for positive dis-crete-time systems with delay,” System Science, vol. 30, no. 4, 2004, 117-130.

12. T. Kaczorek: “Positive minimal realizations for singu-lar discrete-time systems with delays in state and de-lays in control,” Bull. Pol. Acad. Sci. Techn., vol 53, no. 3, 2005, 293-298.

13. T. Kaczorek: “Positive stable realizations with system Metzler matrices,” Proc. MMAR Conf., 22-25 Sept. 2011, Międzyzdroje, Poland.

14. T. Kaczorek: “Computation of positive stable realiza-tions for linear continuous-time systems,” Proc. 20th European Conf. Circuit Theory and Design, August 29 to 31, 2011, Linköping, Sweden.

15. T. Kaczorek: “Selected Problems in Fractional Systems Theory,” Springer-Verlag 2011.

16. U. Shaker and M. Dixon: “Generalized minimal realization of transfer-function matrices,” Int. J. Contr., vol. 25, no. 5, 1977, 785-803.

Wyznaczanie dodatnich stabilnych realizacji dla dyskretnych układów linearnych

Streszczenie: Podane zostaną warunki wystarczające istnienia

stabilnej realizacji dodatniej dla danej właściwej macierzy trans-mitancji operatorowych. Przedstawione zostaną dwie metody wyznaczania stabilnej realizacji dodatniej dla zadanej macierzy transmitancji operatorowych. Efektywność proponowanych metod zilustrowana zostanie przykładami numerycznymi.

Słowa kluczowe: wyznaczanie, realizacja dodatnia, stabilna,

układy dyskretne

prof. dr. hab. inż. Tadeusz Kaczorek

Born 27.04.1932 in Poland, received the MSc., PhD and DSc degrees from Elec-trical Engineering of Warsaw University of Technology in 1956, 1962 and 1964, respectively. In the period 1968-69 he was the dean of Electrical Engineering Faculty and in the period 1970-73 he was the prorector (deputy to rector) of Warsaw University of Technology. Since 1971 he has been professor and since 1974 full professor at Warsaw University

of Technology. In 1986 he was elected a corresponding member and in 1996 full member of Polish Academy of Sciences. In the

period 1988-1991 he was the director of the Research Centre of Polish Academy of Sciences in Rome. In June 1999 he was elected the full member of the Academy of Engineering in Po-land. In May 2004 he was elected the honorary member of the Hungarian Academy of Sciences. He was awarded by the Uni-versity of Zielona Gora (2002) by the title doctor honoris causa, the Technical University of Lublin (2004), the Technical University of Szczecin (2004), Warsaw University of Technology (2004), Bialystok University of Technology (2008), Lodz University of Technology (2009), Opole University of Technology (2009) and Poznan University of Technology (2011).

His research interests cover the theory of systems and the au-tomatic control systems theory, specially, singular multidimen-sional systems, positive multidimenmultidimen-sional systems and singular positive 1D and 2D systems. He has initiated the research in the field of singular 2D, positive 2D linear systems and positive frac-tional 1D and 2D systems. He has published 24 books (7 in Eng-lish) and over 950 scientific papers.

He supervised 69 Ph.D. theses. More than 20 of this PhD stu-dents became professors in USA, UK and Japan. He is editor-in-chief of Bulletin of the Polish Academy of Sciences, Techn. Sci-ences and editorial member of about ten international journals.

Cytaty

Powiązane dokumenty

A dynamical system is called positive if its trajectory starting from any nonnegative initial state remains forever in the positive orthant for all

Prywatyzacja „w ogóle” jest przez Polaków akceptowana jako zjawisko zwi¹zane z transformacj¹ gospodarki, jednak wiele czynników sk³ada siê na chwiejn¹ postawê w stosunku

Uwzględniając ten przepis projekt uchwały o przekształceniu spółki komandytowej w komandytowo-akcyjną powinien zawierać co najmniej: 1 typ spółki, a więc oznaczenie, że

Przykłady sytuacji, które osobno lub łącznie powodują, że umowa leasingu zostanie zazwyczaj zaliczona do leasingu finansowego, są następujące [Międzynarodowe… 2007]: – na

Ustawa II okreœla ustawowy czas pracy, który od tej pory wynosi 35 godzin tygodniowo 1600 godzin rocznie dla przedsiêbiorstw zatrudniaj¹cych co najmniej 20 pracowników.. Mniejsze

Zakresem analizy procesu restrukturyzacji przedsiębiorstw budowlanych, dokonującego się w latach 1990-1998, objęto: - zmiany sieci przedsiębiorstw budowlanych ogólna

408–409]: – pośrednictwo pracy usługi rekrutacji i selekcji kandydatów do pracy, rekrutowanie pracowników tymczasowych, leasing personelu, internetowe poszukiwanie pracowników;

Other locations of the wing strut joint which could feature high stress concentrations are the swivel joints: the U-joint block to the pivot, the yoke to the U-joint block, and the