• Nie Znaleziono Wyników

Oblicz pole powierzchni całkowitej poniższego graniastosłupa

N/A
N/A
Protected

Academic year: 2021

Share "Oblicz pole powierzchni całkowitej poniższego graniastosłupa"

Copied!
2
2
0
Pokaż więcej ( Stron)

Pełen tekst

(1)

Przypominam! Oceniam Waszą pracę. Wskazani uczniowie, gdy wykonają zadania, muszą niezwłocznie przesłać wyniki przez komunikator na e

matematyka2LOpm@gmail.com słowne.

Uwaga: Czas jest ważny! Sprawdzajcie o 10 się logować na swoje konta, a nie rodziców.

Przykładami graniastosłupów są:

powierzchni pokazuje film: https://www.youtube.com/watch?v=NYggdH2QuCI 1. Pole powierzchni całkowitej

podstaw (dolnej i górnej) oraz wszystkich ścian bocznych.

2. Wzór na pole powierzchni całkowitej Możemy zapisać, że:

gdzie:

Pc – pole powierzchni całkowitej Pp – pole podstawy

Pb – pole powierzchni bocznej (czyli suma wszystkich pól ścian bocznych) 3. Pole powierzchni całkowitej prostopadłościanu

Pc=2·a·b+

gdzie:

Pc – pole powierzchni całkowitej

a,b,c – długości krawędzi prostopadłościanu

Przykład. Oblicz pole powierzchni całkowitej poniższego graniastosłupa.

Nasz graniastosłup jest prostopadłościanem o wymiarach Pole powierzchni całkowitej możemy więc obliczyć korzystając

Pc=2·a·b+2·a·c+2·b·c

! Oceniam Waszą pracę. Wskazani uczniowie, gdy wykonają zadania, muszą przez komunikator na e-dzienniku, lub mailem na adres:

matematyka2LOpm@gmail.com skan rozwiązania, zdjęcie - jako załącznik, albo Uwaga: Czas jest ważny! Sprawdzajcie o 1000 wiadomości ode mnie na e

się logować na swoje konta, a nie rodziców.

Karta pracy 34

są: prostopadłościan i sześcian. Sposób obliczania https://www.youtube.com/watch?v=NYggdH2QuCI Pole powierzchni całkowitej graniastosłupa to pole jego siatki, czyli podstaw (dolnej i górnej) oraz wszystkich ścian bocznych.

Wzór na pole powierzchni całkowitej zależy od tego jaki to jest graniastosłup.

Pc=2·Pp+Pb pole powierzchni całkowitej

pole powierzchni bocznej (czyli suma wszystkich pól ścian bocznych) całkowitej prostopadłościanu możemy obliczyć

+2·a·c+2·b·c lub Pc=2⋅(a·b+a·c+b·c) pole powierzchni całkowitej

topadłościanu

Oblicz pole powierzchni całkowitej poniższego graniastosłupa.

Nasz graniastosłup jest prostopadłościanem o wymiarach 4cm×5cm×6 Pole powierzchni całkowitej możemy więc obliczyć korzystając ze wzoru:

! Oceniam Waszą pracę. Wskazani uczniowie, gdy wykonają zadania, muszą dzienniku, lub mailem na adres:

jako załącznik, albo rozwiązanie wiadomości ode mnie na e-dzienniku. Musicie

. Sposób obliczania ich pól https://www.youtube.com/watch?v=NYggdH2QuCI

a to pole jego siatki, czyli suma pól dwóch go jaki to jest graniastosłup.

pole powierzchni bocznej (czyli suma wszystkich pól ścian bocznych)

możemy obliczyć ze wzoru:

c)

Oblicz pole powierzchni całkowitej poniższego graniastosłupa.

6cm.

wzoru:

(2)

Podstawiamy:

a=4cm, b=5cm c=6cm

Pc=2⋅4cm⋅5cm+2·5cm⋅6cm+2·4cm⋅6cm Pc=2⋅20cm2+2·30cm2+2·24cm2

Pc=40cm2 +60cm2 +48cm2 Pc=148cm2

Podręcznik strona 232 Zadanie 1

Cytaty

Powiązane dokumenty

Pole powierzchni całkowitej graniastosłupa lub ostrosłupa jest sumą pól wszystkich ścian. Wiedząc , że krawędź sześcianu wynosi 3cm ,oblicz jego pole powierzchni całkowitej.

n Jeżeli figura ma środek symetrii to jest on

ścian równoległych. Narysuj siatkę prostopadłościanu, którego podstawą jest kwadrat o boku 2 cm. Krawędź boczna jest 2 razy dłuższa niż krawędź podstawy.

Oblicz pole powierzchni całkowitej sześcianu, jeżeli wiesz, że suma długości jego wszystkich krawędzi jest równa 60 cm2. Oblicz ile zużyto szkła na wykonanie

Oblicz pole powierzchni graniastosłupa prostego czworokątnego, którego podstawą jest równoległobok przedstawiony na rysunku.. Wysokość tego graniastosłupa

Pole powierzchni prostopadłościanu to suma pól wszystkich jego ścian. Zatem ,aby obliczyć pole powierzchni prostopadłościanu należy obliczyć pole każdej jego ściany a

Dlatego też przepis, który dzisiaj poznasz będzie pasował także do prostopadłościanu i sześcianu.. Aby obliczyć objętość graniastosłupa należy pomnożyć pole podstawy tego

Zmierz i zapisz potrzebne wymiary. Na siatce zapisz pola powierzchni poszczegól- nych ścian. Oblicz, jakim ułamkiem pola powierzchni sześcianu jest pole powierzchni odciętego

Przypominam! Oceniam Waszą pracę. Sprawdzajcie o 10 00 wiadomości ode mnie na e-dzienniku. Podaną liczbę zaokrąglij na trzy sposoby: do tysięcy, do setek oraz do dziesiątek:. a)

Oblicz pole powierzchni całkowitej graniastosłupa prostego czworokątnego o krawędzi bocznej (wysokości) 10cm, który ma w podstawie romb o boku 8cm i wysokości

pole powierzchni bocznej (czyli suma wszystkich pól ścian bocznych) całkowitej prostopadłościanu możemy obliczyć.. +2·a·c+2·b·c lub P c =2⋅(a·b+a·c+b·c)

Wskazani uczniowie, gdy wykonają zadania, muszą niezwłocznie przesłać wyniki przez komunikator na e-dzienniku, lub mailem na adres:.. matematyka2LOpm@gmail.com skan

Objętość graniastosłupa obliczamy mnożąc pole podstawy tego graniastosłupa przez

Oblicz pole powierzchni całkowitej graniastosłupa prostego czworokątnego o krawędzi bocznej (wysokości) 10cm, który ma w podstawie romb o boku 8cm i wysokości

Oblicz pole powierzchni bocznej

Pole powierzchni całkowitej sześcianu obliczamy poprzez obliczenie pola jednej jego ściany (kwadratu), a następnie pomnożenie otrzymanego wyniku przez 6 , czyli przez ilość

Z dwóch liczb ujemnych ta liczba jest mniejsza, która leży na osi liczbowej dalej od zera.. (Odwrotnie niż

Do rozwiązywania zadań wykorzystaj wiadomości z ostatnich lekcji oraz twierdzenie Pitagorasa. Do sprawdzenia prześlij

Spróbuj rozwiązać zadania, część z zadań może odrobinę wykraczać poza wiadomości z klasy 7 więc

potrzebne do rozwiązania wiadomości, zaznaczają na rysunku potrzebne elementy (ewentualnie pomagają im w wyobrażeniu sobie postawionego problemu modele graniastosłupów)..

Pole powierzchni bocznej walca jest prostokątem o przekątnej długości d=5, a długość okręgu ograniczającego podstawę walca wynosi 6. Oblicz pole powierzchni całkowitej

ścian równoległych. Narysuj siatkę prostopadłościanu, którego podstawą jest kwadrat o boku 2 cm. Krawędź boczna jest 2 razy dłuższa niż krawędź podstawy.

- umie obliczyć pole powierzchni sześcianu, prostopadłościanu oraz brył powstałych po odcięciu prostopadłościennych fragmentów od prostopadłościanu,. - rozumie