• Nie Znaleziono Wyników

Wykład XI Mechanika kwantowa

N/A
N/A
Protected

Academic year: 2021

Share "Wykład XI Mechanika kwantowa"

Copied!
4
0
0

Pełen tekst

(1)

1

Wykład XI Mechanika kwantowa

Atom wodoru

Atom wodoru to układ protonu i elektronu związanych siłą Coulomba.

Ponieważ mamy do czynienia z układem dwucząstkowym, więc punktem wyjścia jest dwucząstkowe równanie Schrödingera. Zakładając nieobecność sił zewnętrznych, w pierwszym kroku oddzielamy (swobodny) ruch środka masy od ruchu względnego. Pojawia się przy tym masa zredukowana układu proton- elektron: memp/(memp). Ponieważ mp me, więc me. Dalej zajmujemy się tylko ruchem względnym. Potencjał Coulomba jest sferycznie symetryczny, tzn. zależy tylko od r . Dokonujemy zatem separacji ruchu radialnego i kątowego stosując zmienne sferyczne. Kątowa część funkcji falowej jest harmoniką sferyczną Ylm(,).

Równanie radialne

Radialna część funkcji falowej R(r) spełnia wyprowadzone wcześniej równanie

) ( )

2 ( ) 1 ( 2

2

2 2 2

2 2

r R E r r R e r m

l l dr r d dr

d r

me e 



,

gdzie pojawił się przyciągający potencjał Coulomba V(r)e2/r. Równanie można też zapisać w postaci

) ( )

2 ( ) 1 ( 2

2

2 2 2

2 2 2

r R E r r R e r m

l l dr

d r m dr

d

me e e 



.

Wprowadzamy nową zmienną r, gdzie jest stałą. Wtedy d/drd/d i mamy

0 ) 2 (

1 2 ) 1 ( 2

2 2 2

2

2 2

2 



R

E m e

m l

l d

d d

d e e

.

Stałą wybieramy tak, że

0

8 4

1 2

2

2 E m E E

me e

.

Wprowadzamy też oznaczenie

E m e e

me e

2

2 2

2 2

, dzięki czemu mamy

0 ) 4 ( 1 )

1 ( 2

2 2

2 



R

l l d

d d

d .

(2)

2

Wykład XI cd. Mechanika kwantowa

Duże odległości

Najpierw badamy zachowanie R(), gdy . Wówczas równanie na

) (

R przybliżamy:

0 ) 4 ( 1

2

2 



R

d

d .

Znajdujemy dwa rozwiązania R()~e/2, jednak rozwiązanie ze znakiem plus odrzucamy, gdyż nie dałoby się ono unormować, jest niefizyczne. A więc na dużych odległościach mamy R()~e/2.

Małe odległości

Teraz rozpatrujemy małe odległości, gdy 0. Zakładamy, że funkcja

) (

R ma postać R()~s, a wtedy równanie radialne zamienia się w

4 0 ) 1

1 ( 2

) 1

(s s2 s s2l l s2 s1 s

s  .

Gdy 0, wiodący wkład dają człony będące najniższą potęga . Możemy więc pominąć dwa ostatnie człony powyższego równania, które podzielone przez s2 daje równanie kwadratowe s(s1)2sl(l1)0 na wykładnik s. Równanie to zapisujemy jako s2sl(l1)0. Wyróżnik równania równy jest

)2

1 2 ( ) 1 ( 4

1

l l l , a jego dwa rozwiązania to: s1

1(2l1)

/2l oraz

1 (2 1)

/2 1

2 l l

s . Ponieważ s20, więc rozwiązanie z tym wykładnikiem byłoby osobliwe dla r0. A zatem rozwiązanie równania radialnego ma postać R()~l, gdy 0.

Uwzględniając zachowanie funkcji R() na dużych i małych

odległościach, ogólne rozwiązanie równania radialnego poszukujemy w postaci

) ( )

( e /2L

R l . Równanie na funkcję L() wygląda następująco:

0 ) ( ) 1 (

] ) 1 ( 2

2 [

2 



l L

d l d

d

d .

Poziomy energii

Dalsza analiza jest zbliżona do tej opisanej w Wykładzie VI, a odnoszącej się do oscylatora harmonicznego. Funkcję L() przedstawimy w postaci szeregu potęgowego i pokazujemy, że prezentuje on funkcję rosnącą jak e. Ponieważ czyniło by to funkcję falową nienormowalną, potęgowy szereg musimy oberwać. Innymi słowy, funkcja L() jest wielomianem. Podstawiając wielomian do równania na funkcję L(), łatwo możemy wykazać, że musi być liczbą naturalną, 1,2,3,. Prowadzi to do skwantowania energii bowiem

(3)

3

3 2 3

2 2

1 0

6 1 2 3 3 1 ) (

2 2 1 1 ) (

1 ) (

1 ) (

L L L L

Wykład XI cd. Mechanika kwantowa

2 2

4

2 1

, 2 3 , 2 ,

2 1 n

e E m

E n m

e e

n n

e

.

Jeśli wprowadzić jest stałą Rydberga1 24

2

e

Ry me , której wartość wynosi 13.6 eV, to

co zgadza się z wynikiem otrzymanym w modelu Bohra.

Stowarzyszone wielomiany Laguerre’a

Równanie na L() z n okazuje się być równaniem na stowarzyszone wielomiany Laguerre’a2 Lpq() (p,q0,1,2,3,):

0 ) ( ) ( ) 1

2 (

2 



q p Lpq

d p d

d

d ,

gdzie p2l1, a qnl. Stowarzyszone wielomiany Laguerre’a Lpq() są zdefiniowane3 jako pochodne ptego rzędu wielomianów Laguerre’a Lq() ( ) ()

pp q

p

q L

d

L d ,

przy czym

q qq

e q

d d q

L e

) !

( .

Radialne funkcje falowe

) ] (

)!

[(

)!

1 (

2 1 )

( 3 3 3 /2 21

l nll

B

nl e L

l n n

l n a r n

R ,

gdzie 2

2

e a m

e B

jest promieniem Bohra, r a n B

2

. Funkcje radialne są wzajemnie ortogonalne, a stała normalizacyjna jest tak wybrana, że

' '

0

2Rnl(r)Rnl(r) nn r

dr

.

1 Johannes Robert Rydberg 1854 – 1919

2 Edmond Laguerre 1834 – 1886

3 W literaturze matematycznej stowarzyszone wielomiany Laguerre’a są definiowane zwykle jako

( ) ( 1) ()

p pp q p

p

q L

d

L d .

n2

En Ry

(4)

4

Wykład XI cd. Mechanika kwantowa

Pierwsze funkcje radialne:

B B B

a r

B B

a r

B B a

r

B

a e r a r

R

a e r a

r R

e a r R

2 3

21 3

2 3

20 3 10 3

2 3 ) 1 (

2 2 ) 1 (

) 2 (





Pełne funkcje falowe atomu wodoru

) , ( ) ( ) , ,

(

nlm r Rnl r Ylm

Liczby kwantowe n ,,l m zmieniają się następująco

l l l

l m

n l

n

, 1 , , 1 , 0 , 1 , ), 1 ( ,

) 1 ( , , 2 , 1 , 0

, 3 , 2 , 1

Funkcje falowe tworzą zbiór ortonormalny

' ' ' '

' '

* 2

0

2 d nlm(r, , ) nlm(r, , ) nn ll mm

r

dr

Degeneracja poziomów energetycznych

Mówimy, że dany poziom energetyczny nie jest zdegenerowany, jeśli temu poziomowi odpowiada tylko jeden stan. Gdy danemu poziomowi odpowiada kilka stanów, mówimy, że ów poziom energetyczny jest zdegenerowany.

Energię atomu wodoru określa tylko liczba kwantowa n. Gdy mamy do czynienia z najniższym poziomem energii, wówczas n1 oraz lm0. Czyli najniższy poziom energii – stan podstawowy – jest niezdegenerowany.

Energii pierwszego stanu wzbudzonego n2 odpowiadają cztery stany o różnych ( ml, ): (0,0), (1,1), (1,0), (1,1). Czyli pierwszy stan wzbudzony jest czterokrotnie zdegenerowany.

Ogólnie nty stan jest zdegenerowany n2 krotnie, co wykazujemy sumując stany odpowiadające różnym l i m przy zadanym n. Przy danym l

mamy (2l1) możliwych m. Sumowanie po l daje:

2 1

0

22 1 2 5

3 1 ) 1 2

( n n n

n l

n

l

.

Cytaty

Powiązane dokumenty

Ponieważ w równaniu Hamiltona-Jacobiego zmiennymi niezależnymi są składowe położenia cząstki w danej chwili czasu, więc z powyższego równania należy wyeliminować

Reguła kwantyzacji Bohra-Sommerfelda pojawiła się najpierw jako postulat Starej teorii kwantów w roku 1915, a dopiero później, w roku 1926 została wyprowadzona

Jego postać zależy od tego, czy energia cząstki jest większa czy mniejsza niż wysokość bariery. Żądamy, aby funkcja falowa i jej pochodna

Rozkład danej wielkości na sumę wkładów o określonych l nosi nazwę rozkładu na fale parcjalne.. Gdy zasięg potencjału jest skończony, równanie Schrödingera

Otrzymane wyniki maja dwie ciekawe cechy: różniczkowy przekrój czynny nie zależy od kąta rozpraszania, czyli jest izotropowy; całkowity zaś przekrój czynny jest cztery

Przybliżenie ma więc zastosowanie, jeśli moduł fali rozproszonej jest dużo mniejszy niż moduł fali padającej. Ponieważ spodziewamy się, że fala rozproszona

Jeśli detektor A zarejestrował elektron, funkcja falowa natychmiast kolapsuje do funkcji delta zlokalizowanej w miejscu, gdzie znajduje się detektor A, więc detektor B nie

Dozwolonymi wynikami pomiarów wielkości fizycznej mogą być tylko wartości własne reprezentującego ją. operatora (związek teorii z doświadczeniem) Jak znaleźć dozwolone